High Temperature ALD Process for Metal Oxide for DRAM Applications
    51.
    发明申请
    High Temperature ALD Process for Metal Oxide for DRAM Applications 有权
    金属氧化物用于DRAM应用的高温ALD工艺

    公开(公告)号:US20140077337A1

    公开(公告)日:2014-03-20

    申请号:US13737156

    申请日:2013-01-09

    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive metal oxide formed using a high temperature, low pressure ALD process. The high temperature ALD process results in a layer with enhanced crystallinity, higher density, reduced shrinkage, and lower carbon contamination. The high temperature ALD process can be used for either or both the bottom electrode and the top electrode layers.

    Abstract translation: 形成金属绝缘体金属(MIM)DRAM电容器的第一电极层,其中第一电极层含有使用高温低压ALD工艺形成的导电金属氧化物。 高温ALD工艺产生了具有增强的结晶度,较高密度,降低的收缩率和较低的碳污染的层。 高温ALD工艺可以用于底部电极和顶部电极层中的一个或两个。

    Enhanced non-noble electrode layers for DRAM capacitor cell
    52.
    发明授权
    Enhanced non-noble electrode layers for DRAM capacitor cell 有权
    用于DRAM电容器电池的增强型非贵金属电极层

    公开(公告)号:US08581318B1

    公开(公告)日:2013-11-12

    申请号:US13737209

    申请日:2013-01-09

    CPC classification number: H01L28/60 H01L28/75

    Abstract: A metal oxide first electrode material for a MIM DRAM capacitor is formed wherein the first and/or second electrode materials or structures contain layers having one or more dopants up to a total doping concentration that will not prevent the electrode materials from crystallizing during a subsequent anneal step. Advantageously, the electrode doped with one or more of the dopants has a work function greater than about 5.0 eV. Advantageously, the electrode doped with one or more of the dopants has a resistivity less than about 1000 μΩcm. Advantageously, the electrode materials are conductive molybdenum oxide.

    Abstract translation: 形成用于MIM DRAM电容器的金属氧化物第一电极材料,其中第一和/或第二电极材料或结构包含具有一个或多个掺杂剂的层,直到总掺杂浓度,其将不会阻止电极材料在随后的退火期间结晶 步。 有利地,掺杂有一种或多种掺杂剂的电极具有大于约5.0eV的功函数。 有利地,掺杂有一种或多种掺杂剂的电极具有小于约1000微米的电阻率。 有利地,电极材料是导电性氧化钼。

    Method for Fabricating a DRAM Capacitor
    54.
    发明申请
    Method for Fabricating a DRAM Capacitor 有权
    制造DRAM电容器的方法

    公开(公告)号:US20130154057A1

    公开(公告)日:2013-06-20

    申请号:US13738794

    申请日:2013-01-10

    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal compound and the conductive binary metal compound is annealed in a reducing atmosphere to promote the formation of a desired crystal structure. The binary metal compound may be a metal oxide. Annealing the metal oxide (i.e. molybdenum oxide) in a reducing atmosphere may result in the formation of a first electrode material (i.e. MoO2) with a rutile-phase crystal structure. This facilitates the formation of the rutile-phase crystal structure when TiO2 is used as the dielectric layer. The rutile-phase of TiO2 has a higher k value than the other possible crystal structures of TiO2 resulting in improved performance of the DRAM capacitor.

    Abstract translation: 公开了一种用于制造动态随机存取存储器(DRAM)电容器堆叠的方法,其中堆叠包括第一电极,电介质层和第二电极。 第一电极由导电二元金属化合物形成,并且导电二元金属化合物在还原气氛中退火以促进所需晶体结构的形成。 二元金属化合物可以是金属氧化物。 在还原气氛中退火金属氧化物(即氧化钼)可导致形成具有金红石相晶体结构的第一电极材料(即MoO 2)。 当使用TiO 2作为电介质层时,这有助于金红石相晶体结构的形成。 TiO 2的金红石相具有比其他可能的TiO 2晶体结构更高的k值,从而改善了DRAM电容器的性能。

    Method for ALD Deposition Rate Enhancement
    55.
    发明申请
    Method for ALD Deposition Rate Enhancement 有权
    ALD沉积速率增强方法

    公开(公告)号:US20130140675A1

    公开(公告)日:2013-06-06

    申请号:US13738901

    申请日:2013-01-10

    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode layer, forming a catalytic layer on the first electrode layer, optionally annealing the catalytic layer, forming a dielectric layer on the catalytic layer, optionally annealing the dielectric layer, forming a second electrode layer on the dielectric layer, and optionally annealing the capacitor stack. Advantageously, the electrode layers are TiN, the catalytic layer is MoO2−x where x is between 0 and 2, and the physical thickness of the catalytic layer is between about 0.5 nm and about 10 nm, and the dielectric layer is ZrO2.

    Abstract translation: 一种用于制造动态随机存取存储器(DRAM)电容器的方法包括:形成第一电极层,在第一电极层上形成催化层,任选地退火催化层,在催化层上形成电介质层, 在电介质层上形成第二电极层,并且可选地对电容器堆叠进行退火。 有利地,电极层是TiN,催化剂层是MoO 2-x,其中x在0和2之间,催化层的物理厚度在约0.5nm和约10nm之间,并且电介质层是ZrO 2。

    Band Gap Improvement In DRAM Capacitors
    56.
    发明申请
    Band Gap Improvement In DRAM Capacitors 审中-公开
    DRAM电容器带隙改进

    公开(公告)号:US20130127015A1

    公开(公告)日:2013-05-23

    申请号:US13738831

    申请日:2013-01-10

    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current and low EOT involves the use of an compound high k dielectric material. The dielectric material further comprises a dopant. One component of the compound high k dielectric material is present in a concentration between about 30 atomic % and about 80 atomic and more preferably between about 40 atomic % and about 60 atomic %. In some embodiments, the compound high k dielectric material comprises an alloy of TiO2 and ZrO2 and further comprises a dopant of Al2O3. In some embodiments, the compound high k dielectric material comprises an admixture of TiO2 and HfO2 and further comprises a dopant of Al2O3.

    Abstract translation: 用于形成具有低漏电流和低EOT的DRAM MIM电容器堆叠的方法涉及使用复合高k电介质材料。 电介质材料还包括掺杂剂。 化合物高k介电材料的一个组分以约30原子%至约80原子之间的浓度存在,更优选约40原子%至约60原子%之间。 在一些实施方案中,化合物高k介电材料包含TiO 2和ZrO 2的合金,并且还包含Al 2 O 3的掺杂剂。 在一些实施方案中,化合物高k介电材料包含TiO 2和HfO 2的混合物,并且还包含Al 2 O 3的掺杂剂。

    Molybdenum Oxide Top Electrode for DRAM Capacitors
    57.
    发明申请
    Molybdenum Oxide Top Electrode for DRAM Capacitors 审中-公开
    用于DRAM电容器的氧化钼顶部电极

    公开(公告)号:US20130056851A1

    公开(公告)日:2013-03-07

    申请号:US13664922

    申请日:2012-10-31

    CPC classification number: H01L28/65 H01L28/75

    Abstract: A metal oxide bilayer second electrode for a MIM DRAM capacitor is formed wherein the layer of the electrode that is in contact with the dielectric layer (i.e. bottom layer) has a desired composition and crystal structure. An example is crystalline MoO2 if the dielectric layer is TiO2 in the rutile phase. The other component of the bilayer (i.e. top layer) is a sub-oxide of the same material as the bottom layer. The top layer serves to protect the bottom layer from oxidation during subsequent PMA or other DRAM fabrication steps by reacting with any oxygen species before they can reach the bottom layer of the bilayer second electrode.

    Abstract translation: 形成用于MIM DRAM电容器的金属氧化物双层第二电极,其中与电介质层(即,底层)接触的电极层具有期望的组成和晶体结构。 如果电介质层是金红石相中的TiO 2,那么结晶MoO2就是一个例子。 双层的另一部分(即顶层)是与底层相同的材料的次氧化物。 顶层用于在随后的PMA或其它DRAM制造步骤期间通过与任何氧物种反应而在它们可以到达双层第二电极的底层之前保护底层免受氧化。

    Inexpensive electrode materials to facilitate rutile phase titanium oxide

    公开(公告)号:US20130037913A1

    公开(公告)日:2013-02-14

    申请号:US13655653

    申请日:2012-10-19

    CPC classification number: H01L28/60 C23C16/405 H01L27/10852 H01L28/40

    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.

Patent Agency Ranking