摘要:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a flash layer between the dielectric layer and the first electrode layer. A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capping layer between the dielectric layer and the second electrode layer. The flash layer and the capping layer can be formed using an atomic layer deposition (ALD) technique. The precursor materials used for forming the flash layer and the capping layer are selected such they include at least one metal-oxygen bond. Additionally, the precursor materials are selected to also include “bulky” ligands.
摘要:
A metal oxide first electrode layer for a MIM DRAM capacitor is formed wherein the first and/or second electrode layers contain one or more dopants up to a total doping concentration that will not prevent the electrode layers from crystallizing during a subsequent anneal step. One or more of the dopants has a work function greater than about 5.0 eV. One or more of the dopants has a resistivity less than about 1000 μΩ cm. Advantageously, the electrode layers are conductive molybdenum oxide.
摘要:
A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
摘要:
A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
摘要:
A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
摘要:
This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
摘要:
This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
摘要:
Embodiments of the current invention include methods of forming a strontium titanate (SrTiO3) film using atomic layer deposition (ALD). More particularly, the method includes forming a plurality of titanium oxide (TiO2) unit films using ALD and forming a plurality of strontium oxide (SrO) unit films using ALD. The combined thickness of the TiO2 and SrO unit films is less than approximately 5 angstroms. The TiO2 and SrO units films are then annealed to form a strontium titanate layer.
摘要翻译:本发明的实施方案包括使用原子层沉积(ALD)形成钛酸锶(SrTiO 3)膜的方法。 更具体地说,该方法包括使用ALD形成多个氧化钛(TiO 2)单元膜并使用ALD形成多个氧化锶(SrO)单元膜。 TiO 2和SrO单元膜的组合厚度小于约5埃。 然后将TiO 2和SrO单元膜退火以形成钛酸锶层。
摘要:
Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
摘要:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a flash layer between the dielectric layer and the first electrode layer. A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capping layer between the dielectric layer and the second electrode layer. The flash layer and the capping layer can be formed using an atomic layer deposition (ALD) technique. The precursor materials used for forming the flash layer and the capping layer are selected such they include at least one metal-oxygen bond. Additionally, the precursor materials are selected to also include “bulky” ligands.