摘要:
A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
摘要:
This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle. The process provides high deposition rates, and the resulting MIM structure has substantially no x-ray diffraction peaks associated with anatase-phase titanium oxide.
摘要:
A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high-k phase of a subsequently deposited dielectric layer. The high-k dielectric layer includes a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
摘要:
Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
摘要:
In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
摘要:
A method for forming a capacitor stack is described. In some embodiments of the present invention, a first dielectric material is formed above a first electrode material. The first electrode material is rigid and has good mechanical strength and serves as a robust frame for the capacitor stack. The first dielectric material is sufficiently thin ( 3nm) or lightly doped or non-doped so that it crystallizes after subsequent anneal treatments. A second electrode material is formed adjacent to the second dielectric material. The second electrode material has a high work function and a crystal structure that serves to promote the formation of the high k-value crystal structure of the second dielectric material.
摘要:
A metal oxide first electrode material for a MIM DRAM capacitor is formed wherein the first and/or second electrode materials or structures contain layers having one or more dopants up to a total doping concentration that will not prevent the electrode materials from crystallizing during a subsequent anneal step. Advantageously, the electrode doped with one or more of the dopants has a work function greater than about 5.0 eV. Advantageously, the electrode doped with one or more of the dopants has a resistivity less than about 1000 μΩcm. Advantageously, the electrode materials are conductive molybdenum oxide.
摘要:
A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
摘要:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
摘要:
A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.