摘要:
Re-programmable antifuses and structures utilizing re-programmable antifuses are presented herein. Such structures include a configurable interconnect circuit having at least one re-programmable antifuse, wherein the at least one re-programmable antifuse is configured to be programmed to conduct by applying a first voltage across it and is configured to be re-programmed not to conduct by applying second voltage across it, wherein the second voltage is higher than the first voltage. Additionally, the re-programmable antifuses may be configured to a permanently conductive state by applying an even higher voltage across it.
摘要:
Electronic devices comprising a dielectric material, at least one carbon sheet, and two electrode terminals are described herein. The devices exhibit non-linear current-versus-voltage response over a voltage sweep range in various embodiments. Uses of the electronic devices as two-terminal memory devices, logic units, and sensors are disclosed. Processes for making the electronic devices are disclosed. Methods for using the electronic devices in analytical methods are disclosed.
摘要:
The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon or other surfaces, wherein such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. The present invention is also directed to the novel compositions produced by such methods. Previous work by Applicants has demonstrated covalent attachment of arenes via aryldiazonium salts to Si (hydride passivated single crystal or poly Si; or , p-doped, n-doped or intrinsic), GaAs, and Pd surfaces. In the case of Si, this provides a direct arene-Si bond with no intervening oxide. Applicants have also reported on the use of aryldiazonium salts for the direct covalent linkage of arenes to single wall carbon nanotubes (SWNTs) where the nanotubes can exist either as bundles or individual structures (when surfactant-wrapped). In some embodiments, the present invention is directed to a merger of these two technologies to afford the covalent attachment of individualized (unroped) SWNTs to Si surfaces.
摘要:
The present invention utilizes non-halogenated aromatic compounds as flame retardants for polymer containing materials. Specifically, the compounds may be various non-halogenated aromatics such as the aromatic boronic acids. Suitable aromatic compounds include 1,4-benzenediboronic acid, and phenylboronic acid, although other non-halogenated compounds may be utilized. Various polymer-containing materials may utilized the flame retardants of the present invention. Examples include the polyethylenes, polypropylenes, polycarbonates, acrylonitrile-butadiene-styrenes, and high impact polystyrenes.
摘要:
An integrated circuit structure including a plurality of transistors; a plurality of thin-film conductor interconnects, interconnected to form electronic circuits in a predetermined electrical configuration; and a plurality of pairs of contact pads, connected to the thin-film conductor interconnects, each adjacent pair of contact pads including a first pad of a first conductive material and a second pad of a second conductive material, and being electrically connected only by a conductive oligomer of a precisely determined number of units.
摘要:
A low-cost and facile method of purifying fullerenes to obtain a preparation enriched in a fullerene of selected molecular weight using activated carbon involves adding a fullerene mixture to the top end of a column comprising activated carbon, passing a solvent in which the selected molecular weight fullerene is soluble through the column, and recovering a fraction enriched in the selected molecular weight fullerene from the bottom end of the column. In addition to activated carbon, the column may further comprise silica gel, diatomaceous earth, or other materials which aid in column packing and eluent flow.
摘要:
In some embodiments, the present disclosure pertains to methods of capturing CO2 from an environment by hydrating a porous material with water molecules to the extent thereby to define a preselected region of a plurality of hydrated pores and yet to the extent to allow the preselected region of a plurality of pores of the porous material to uptake gas molecules; positioning the porous material within a CO2 associated environment; and capturing CO2 by the hydrated porous material. In some embodiments, the pore volume of the hydrated porous material includes between 90% and 20% of the pre-hydrated pore volume to provide unhydrated pore volume within the porous material for enhanced selective uptake of CO2 in the CO2 associated environment. In some embodiments, the step of capturing includes forming CO2-hydrates within the pores of the porous material, where the CO2·n/H2O ratio is n
摘要:
Methods of producing graphene nanoplatelets by exposing graphite to a medium to form a dispersion of graphite in the medium. In some embodiments, the exposing results in formation of graphene nanoplatelets from the graphite. In some embodiments, the medium includes the following components: (a) an acid; (b) a dehydrating agent; and (c) an oxidizing agent. In some embodiments, the methods of the present disclosure result in the formation of graphene nanoplatelets at a yield of more than 90%. In some embodiments, the methods of the present disclosure result in the formation of graphene nanoplatelets in bulk quantities that are more than about a 1 kg of graphene nanoplatelets. Additional embodiments of the present disclosure pertains to the formed graphene nanoplatelets. In some embodiments, the graphene nanoplatelets include a plurality of layers, such as from about 1 layer to about 100 layers.
摘要:
Embodiments of the present disclosure pertain to methods of forming a polymer composite by exposing a solution that includes nanomaterials (e.g., functionalized graphene nanoribbons) and cross-linkable polymer components (e.g., thermoset polymers and monomers) to a microwave source, where the exposing results in the curing of the cross-linkable polymer component in the presence of the nanomaterial to form the polymer composite. The solution may be exposed to a microwave source in a geological formation such that the formed polymer composite becomes embedded with the geological formation and thereby enhances the stability of the geological formation. Additional embodiments of the present disclosure pertain to the aforementioned polymer composites.
摘要:
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.