Spin valve structure design with laminated free layer
    51.
    发明授权
    Spin valve structure design with laminated free layer 失效
    自旋阀结构设计采用层压自由层

    公开(公告)号:US06392853B1

    公开(公告)日:2002-05-21

    申请号:US09489973

    申请日:2000-01-24

    IPC分类号: G11B539

    摘要: The giant magnetoresistance (GMR) effect includes a contribution that is due to anisotropic magnetoresistance (AMR). Unfortunately the AMR effect tends to degrade the peak-to-peak signal asymmetry. Additionally, a high AMR/GMR ratio causes a larger signal asymmetry variation. It is therefor desirable to reduce both the AMR contribution as well as the AMR/GMR ratio. This has been achieved by modifying the free layer through the insertion of an extra layer of a highly resistive or insulating material at approximately mid thickness level. This layer is from 3 to 15 Angstroms thick and serves to reduce the Anisotropic Magneto-resistance contribution to the total magneto-resistance of the device. This reduces the GMR contribution only slightly but cuts the AMR/GMR ratio in half, thereby improving cross-track asymmetry and signal linearity.

    摘要翻译: 巨磁电阻(GMR)效应包括归因于各向异性磁阻(AMR)。 不幸的是,AMR效应趋于降低峰 - 峰信号不对称性。 另外,高AMR / GMR比率导致更大的信号不对称变化。 因此,减少AMR贡献以及AMR / GMR比值是有希望的。 这已经通过在大约中等厚度水平上插入高电阻或绝缘材料的额外层来修饰自由层来实现。 该层厚度为3至15埃,用于降低各向异性磁阻对器件的总磁阻的贡献。 这仅略微降低了GMR贡献,但将AMR / GMR比率降低了一半,从而提高了交叉磁道不对称性和信号线性度。

    Synthetic free layer for CPP GMR
    54.
    发明授权
    Synthetic free layer for CPP GMR 失效
    CPP GMR的合成自由层

    公开(公告)号:US07130168B2

    公开(公告)日:2006-10-31

    申请号:US11229155

    申请日:2005-09-16

    IPC分类号: G11B5/33

    摘要: Reduction of the free layer thickness in GMR devices is desirable in order to meet higher signal requirements, besides improving the GMR ratio itself. However, thinning of the free layer reduces the GMR ratio and leads to poor thermal stability. This problem has been overcome by making AP2 from an inverse GMR material and by changing the free layer from a single uniform layer to a ferromagnetic layer AFM (antiferromagnetically) coupled to a layer of inverse GMR material. Examples of alloys that may be used for the inverse GMR materials include FeCr, NiFeCr, NiCr, CoCr, CoFeCr, and CoFeV. Additionally, the ruthenium layer normally used to effect antiferromagnetic coupling can be replaced by a layer of chromium. A process to manufacture the structure is also described.

    摘要翻译: 为了满足更高的信号要求,除了改善GMR比率本身外,希望降低GMR器件中的自由层厚度。 然而,自由层的减薄降低了GMR比并导致差的热稳定性。 通过从反GMR材料制备AP 2并通过将自由层从单个均匀层改变为耦合到反向GMR材料层的铁磁层AFM(反铁磁性)而已经克服了该问题。 可用于逆GMR材料的合金的实例包括FeCr,NiFeCr,NiCr,CoCr,CoFeCr和CoFeV。 此外,通常用于实现反铁磁耦合的钌层可以被铬层代替。 还描述了制造该结构的方法。

    Fabrication method for an in-stack stabilized synthetic stitched CPP GMR head
    60.
    发明申请
    Fabrication method for an in-stack stabilized synthetic stitched CPP GMR head 失效
    堆叠稳定的合成缝合CPP GMR头的制造方法

    公开(公告)号:US20050219773A1

    公开(公告)日:2005-10-06

    申请号:US10812695

    申请日:2004-03-30

    摘要: A method for fabricating a stitched CPP synthetic spin-valve sensor with in-stack stabilization of its free layer. The method can also be applied to the formation of a stitched tunneling magnetoresistive sensor. The free layer is strongly stabilized by magnetostatic coupling through the use of a longitudinal biasing formation that includes a ferromagnetic layer, denoted LBL, within the pillar portion of the sensor and a synthetic exchange coupled tri-layer within the stitched portion of the sensor. The tri-layer consists of two ferromagnetic layers, FM1 and FM2 separated by a coupling layer and magnetized longitudinally in antiparallel directions. A criterion for the magnetic thicknesses of the layers: [t(LBL)+t(FM1)]/t(FM2)=70/90 angstroms of CoFe insures a strong exchange coupling. The magnetization of the tri-layer is done in a low field anneal that does not disturb the previous magnetization of the ferromagnetic free layer.

    摘要翻译: 一种用于制造其自由层的堆叠稳定化的缝合CPP合成自旋阀传感器的方法。 该方法还可以应用于缝合隧道磁阻传感器的形成。 通过使用包括在传感器的柱部分中表示为LBL的铁磁性层的纵向偏压结构和在传感器的缝合部分内的合成交换耦合三层的静电耦合,自由层被强烈地稳定。 三层由两个铁磁层组成,FM 1和FM 2由耦合层分开,并沿反向平行方向纵向磁化。 层的磁性厚度的标准:CoFe的[t(LBL)+ t(FM 1)] / t(FM 2)= 70/90埃确保了强的交换耦合。 三层的磁化是在不影响铁磁自由层的先前磁化的低场退火中进行的。