摘要:
A method of controlling both alignment and registration (lateral position) of lamellae formed from self-assembly of block copolymers, the method comprising the steps of obtaining a substrate having an energetically neutral surface layer comprising a first topographic “phase pinning” pattern and a second topographic “guiding” pattern; obtaining a self-assembling di-block copolymer; coating the self-assembling di-block copolymer on the energetically neutral surface to obtain a coated substrate; and annealing the coated substrate to obtain micro-domains of the di-block copolymer.
摘要:
A biomolecular array includes a substrate across which is distributed an array of discrete regions of a porous substance formed from a porogen-containing organosilicate material. The porous substance is designed to bind chemical targets useful in biotechnology applications, such as gene expression, protein, antibody, and antigen experiments. The regions are preferably optically isolated from each other and may be shaped to enhance detection of optical radiation emanating from the porous substance, e.g., as a result of irradiation of the regions with ultraviolet light. The discrete regions may be configured as microscopic wells within the substrate, or they may reside on top of the substrate in the form of microscopic mesas.
摘要:
A method of forming a block copolymer pattern comprises providing a substrate comprising a topographic pre-pattern comprising a ridge surface separated by a height, h, greater than 0 nanometers from a trench surface; disposing a block copolymer comprising two or more block components on the topographic pre-pattern to form a layer having a thickness of more than 0 nanometers over the ridge surface and the trench surface; and annealing the layer to form a block copolymer pattern having a periodicity of the topographic pre-pattern, the block copolymer pattern comprising microdomains of self-assembled block copolymer disposed on the ridge surface and the trench surface, wherein the microdomains disposed on the ridge surface have a different orientation compared to the microdomains disposed on the trench surface.
摘要:
A method and associated structure. A substrate is provided. The substrate has an energetically neutral corrugated surface layer. A film is formed on the corrugated surface layer. The film includes a combination of a di-block copolymer and a stiffening compound. The di-block copolymer includes lamellar microdomains of a first polymer block and lamellar microdomains of a second polymer block. The stiffening compound is dissolved within the first polymer block. At least one lamellar microdomain is removed from the film such that an oriented structure remains on the surface layer.
摘要:
An interconnection between a sublithographic-pitched structure and a lithographic pitched structure is formed. A plurality of conductive lines having a sublithographic pitch may be lithographically patterned and cut along a line at an angle less than 45 degrees from the lengthwise direction of the plurality of conductive lines. Alternately, a copolymer mixed with homopolymer may be placed into a recessed area and self-aligned to form a plurality of conductive lines having a sublithographic pitch in the constant width region and a lithographic dimension between adjacent lines at a trapezoidal region. Yet alternately, a first plurality of conductive lines with the sublithographic pitch and a second plurality of conductive lines with the lithographic pitch may be formed at the same level or at different.
摘要:
A first nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running along a first direction is formed from first self-assembling block copolymers within a first layer. The first layer is filled with a filler material and a second layer is deposited above the first layer containing the first nanoscale nested line structure. A second nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running in a second direction is formed from second self-assembling block copolymers within the second layer. The composite pattern of the first nanoscale nested line structure and the second nanoscale nested line structure is transferred into an underlayer beneath the first layer to form an array of structures containing periodicity in two directions.
摘要:
Bilayer systems include a bottom layer formed of polydimethylglutarimide, an acid labile dissolution inhibitor and a photoacid generator. The bilayer system can be exposed and developed in a single exposure and development process.
摘要:
A method of controlling both alignment and registration (lateral position) of lamellae formed from self-assembly of block copolymers, the method comprising the steps of obtaining a substrate having an energetically neutral surface layer comprising a first topographic “phase pinning” pattern and a second topographic “guiding” pattern; obtaining a self-assembling di-block copolymer; coating the self-assembling di-block copolymer on the energetically neutral surface to obtain a coated substrate; and annealing the coated substrate to obtain micro-domains of the di-block copolymer.
摘要:
A method. A combination is provided of a block copolymer and additional material. The copolymer includes a first block of a first polymer covalently bonded to a second block of a second polymer. The additional material is miscible with the first polymer. The first polymer includes polystyrene and the second polymer includes poly(ethylene oxide). A first layer including polydimethylglutarimide is adhered onto a surface of a substrate including a dielectric coated silicon wafer. A film is formed of the combination directly onto a surface of the first layer. Nanostructures of the additional material self-assemble within the first polymer block. The film and the first layer are simultaneously etched. The nanostructures have an etch rate lower than an etch rate of the block copolymer and lower than an etch rate of the first layer. Portions of the film are removed. Features remain on the surface of the first layer.
摘要:
A method of orienting microphase-separated domains is disclosed, comprising applying a composition comprising an orientation control component, and a block copolymer assembly component comprising a block copolymer having at least two microphase-separated domains in which the orientation control component is substantially immiscible with the block copolymer assembly component upon forming a film; and forming a compositionally vertically segregated film on the surface of the substrate from the composition. The orientation control component and block copolymer segregate during film forming to form the compositionally vertically-segregated film on the surface of a substrate, where the orientation control component is enriched adjacent to the surface of the compositionally segregated film adjacent to the surface of the substrate, and the block copolymer assembly is enriched at an air-surface interface.