Methods of making relaxed silicon-germanium on insulator via layer transfer
    51.
    发明授权
    Methods of making relaxed silicon-germanium on insulator via layer transfer 失效
    通过层转移在绝缘体上制造松散的硅 - 锗的方法

    公开(公告)号:US06767802B1

    公开(公告)日:2004-07-27

    申请号:US10665944

    申请日:2003-09-19

    IPC分类号: H01L2176

    CPC分类号: H01L21/76254

    摘要: Methods of forming a SiGe layer overlying an insulator are provided. A layer of SiGe is deposited on a substrate and implanted with ion to form a defect region within the SiGe material below its surface. The SiGe layer is then patterned and transferred by contact bonding to an insulator on a second substrate. After contact bonding the structure is annealed to split the SiGe layer along the defect region. The splitting anneal will relax the SiGe layer. Additional annealing at higher temperatures may be used to further relax the SiGe layer. A layer of strained silicon may then be epitaxial deposited on the resulting structure of relaxed SiGe on insulator. Another method provides for epitaxially depositing a layer of silicon over the SiGe layer prior to patterning. The silicon layer would then be bonded to the insulator on the second substrate. The splitting anneal and additional anneals, if any, should then induce strain into the silicon layer. The silicon layer would then remain over the insulator after the SiGe layer is removed.

    摘要翻译: 提供了形成覆盖在绝缘体上的SiGe层的方法。 将一层SiGe沉积在衬底上并注入离子以在其表面下方的SiGe材料内形成缺陷区。 然后,通过接触粘合将SiGe层图案化并转移到第二基板上的绝缘体。 在接合之后,将结构退火以沿着缺陷区域分离SiGe层。 分裂退火将使SiGe层松弛。 可以在较高温度下进行额外退火以进一步松弛SiGe层。 然后可以将绝缘体上的松散SiGe结构外延沉积一层应变硅。 另一种方法提供在图案化之前在SiGe层上外延沉积硅层。 然后将硅层与第二基板上的绝缘体接合。 分裂退火和额外的退火(如果有的话)应该在硅层中诱导应变。 在除去SiGe层之后,硅层将保留在绝缘体上。

    Gallium nitride-on-silicon interface
    52.
    发明申请
    Gallium nitride-on-silicon interface 审中-公开
    氮化镓在硅界面

    公开(公告)号:US20080280426A1

    公开(公告)日:2008-11-13

    申请号:US11801210

    申请日:2007-05-09

    IPC分类号: H01L29/739 H01L21/20

    摘要: A method is provided for forming a matching thermal expansion interface between silicon (Si) and gallium nitride (GaN) films. The method provides a (111) Si substrate and forms a first aluminum (Al)-containing film in compression overlying the Si substrate. Nano-column holes are formed in the first Al-containing film, which exposes regions of the underlying Si substrate. A layer of GaN layer is selectively grown from the exposed regions, covering the first Al-containing film. The GaN is grown using a lateral nanoheteroepitaxy overgrowth (LNEO) process. The above-mentioned processes are reiterated, forming a second Al-containing film in compression, forming nano-column holes in the second Al-containing film, and selectively growing a second GaN layer. Film materials such as Al2O3, Si1-xGex, InP, GaP, GaAs, AlN, AlGaN, or GaN, may be initially grown at a low temperature. By increasing the growth temperatures, a compressed layer of epitaxial GaN can be formed on a Si substrate.

    摘要翻译: 提供了一种在硅(Si)和氮化镓(GaN)膜之间形成匹配的热膨胀界面的方法。 该方法提供(111)Si衬底并且在压缩覆盖Si衬底上形成第一含铝(Al)的膜。 在第一含Al膜中形成纳米柱孔,其暴露下面的Si衬底的区域。 从暴露区域选择性地生长GaN层,覆盖第一含Al膜。 使用横向纳米外延生长(LNEO)工艺生长GaN。 重复上述过程,在压缩中形成第二含Al膜,在第二含Al膜中形成纳米柱孔,并选择性地生长第二GaN层。 可以最初在低温下生长诸如Al 2 O 3 3,Si 1-x Ge x,InP,GaP,GaAs,AlN,AlGaN或GaN的膜材料。 通过增加生长温度,可以在Si衬底上形成外延GaN的压缩层。

    Method of fabricating a nickel silicide on a substrate
    53.
    发明授权
    Method of fabricating a nickel silicide on a substrate 有权
    在衬底上制造硅化镍的方法

    公开(公告)号:US06720258B2

    公开(公告)日:2004-04-13

    申请号:US10319313

    申请日:2002-12-12

    IPC分类号: H01L2144

    CPC分类号: H01L21/28518 H01L29/456

    摘要: An integrated circuit device, and a method of manufacturing the same, comprises an epitaxial nickel silicide on (100) Si, or a stable nickel silicide on amorphous Si, fabricated with a cobalt interlayer. In one embodiment the method comprises depositing a cobalt (Co) interface layer between the Ni and Si layers prior to the silicidation reaction. The cobalt interlayer regulates the flux of the Ni atoms through the cobalt/nickel/silicon alloy layer formed from the reaction of the cobalt interlayer with the nickel and the silicon so that the Ni atoms reach the Si interface at a similar rate, i.e., without any orientation preference, so as to form a uniform layer of nickel silicide. The nickel silicide may be annealed to form a uniform crystalline nickel disilicide. Accordingly, a single crystal nickel silicide on (100) Si or on amorphous Si is achieved wherein the nickel silicide has improved stability and may be utilized in ultra-shallow junction devices.

    摘要翻译: 集成电路器件及其制造方法包括在(100)Si上的外延硅化镍,或者由钴中间层制造的在非晶Si上的稳定的硅化镍。 在一个实施方案中,该方法包括在硅化反应之前在Ni和Si层之间沉积钴(Co)界面层。 钴中间层通过由钴中间层与镍和硅的反应形成的钴/镍/硅合金层调节Ni原子的通量,使得Ni原子以相似的速率到达Si界面,即没有 任何取向偏好,从而形成均匀的硅化镍层。 可以将镍硅化物退火以形成均匀的结晶二硅化镍。 因此,实现了(100)Si或非晶Si上的单晶硅化镍,其中硅化镍具有改进的稳定性并可用于超浅结结器件中。

    Gallium nitride on silicon with a thermal expansion transition buffer layer
    55.
    发明申请
    Gallium nitride on silicon with a thermal expansion transition buffer layer 审中-公开
    具有热膨胀过渡缓冲层的硅上的氮化镓

    公开(公告)号:US20080173895A1

    公开(公告)日:2008-07-24

    申请号:US11657149

    申请日:2007-01-24

    IPC分类号: H01L29/267 H01L21/20

    摘要: A method is provided for forming a matching thermal expansion interface between silicon (Si) and gallium nitride (GaN) films. The method provides a (111) Si substrate with a first thermal expansion coefficient (TEC), and forms a silicon-germanium (SiGe) film overlying the Si substrate. A buffer layer is deposited overlying the SiGe film. The buffer layer may be aluminum nitride (AlN) or aluminum-gallium nitride (AlGaN). A GaN film is deposited overlying the buffer layer having a second TEC, greater than the first TEC. The SiGe film has a third TEC, with a value in between the first and second TECs. In one aspect, a graded SiGe film may be formed having a Ge content ratio in a range of about 0% to 50%, where the Ge content increases with the graded SiGe film thickness.

    摘要翻译: 提供了一种在硅(Si)和氮化镓(GaN)膜之间形成匹配的热膨胀界面的方法。 该方法提供具有第一热膨胀系数(TEC)的(111)Si衬底,并且形成覆盖Si衬底的硅 - 锗(SiGe)膜。 沉积SiGe膜上的缓冲层。 缓冲层可以是氮化铝(AlN)或铝 - 氮化镓(AlGaN)。 沉积GaN缓冲层,其具有大于第一TEC的第二TEC。 SiGe电影拥有第三个TEC,其值在第一和第二TEC之间。 一方面,可以形成具有Ge含量比在约0%至50%的范围内的等级SiGe膜,其中Ge含量随着梯度SiGe膜厚度而增加。

    Thermal Expansion Transition Buffer Layer for Gallium Nitride on Silicon
    56.
    发明申请
    Thermal Expansion Transition Buffer Layer for Gallium Nitride on Silicon 审中-公开
    硅上氮化镓的热膨胀转变缓冲层

    公开(公告)号:US20080315255A1

    公开(公告)日:2008-12-25

    申请号:US12199144

    申请日:2008-08-27

    IPC分类号: H01L29/267

    摘要: A method is provided for forming a matching thermal expansion interface between silicon (Si) and gallium nitride (GaN) films. The method provides a (111) Si substrate with a first thermal expansion coefficient (TEC), and forms a silicon-germanium (SiGe) film overlying the Si substrate. A buffer layer is deposited overlying the SiGe film. The buffer layer may be aluminum nitride (AlN) or aluminum-gallium nitride (AlGaN). A GaN film is deposited overlying the buffer layer having a second TEC, greater than the first TEC. The SiGe film has a third TEC, with a value in between the first and second TECs. In one aspect, a graded SiGe film may be formed having a Ge content ratio in a range of about 0% to 50%, where the Ge content increases with the graded SiGe film thickness.

    摘要翻译: 提供了一种在硅(Si)和氮化镓(GaN)膜之间形成匹配的热膨胀界面的方法。 该方法提供具有第一热膨胀系数(TEC)的(111)Si衬底,并且形成覆盖Si衬底的硅 - 锗(SiGe)膜。 沉积SiGe膜上的缓冲层。 缓冲层可以是氮化铝(AlN)或铝 - 氮化镓(AlGaN)。 沉积GaN缓冲层,其具有大于第一TEC的第二TEC。 SiGe电影拥有第三个TEC,其值在第一和第二TEC之间。 一方面,可以形成具有Ge含量比在约0%至50%的范围内的等级SiGe膜,其中Ge含量随着梯度SiGe膜厚度而增加。

    Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers
    59.
    发明申请
    Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers 失效
    使用多个铝化合物缓冲层的氮化镓 - 硅 - 硅界面

    公开(公告)号:US20090008647A1

    公开(公告)日:2009-01-08

    申请号:US11825427

    申请日:2007-07-06

    IPC分类号: H01L29/15 H01L21/20

    摘要: A thermal expansion interface between silicon (Si) and gallium nitride (GaN) films using multiple buffer layers of aluminum compounds has been provided, along with an associated fabrication method. The method provides a (111) Si substrate and deposits a first layer of AlN overlying the substrate by heating the substrate to a relatively high temperature of 1000 to 1200° C. A second layer of AlN is deposited overlying the first layer of AlN at a lower temperature of 500 to 800° C. A third layer of AlN is deposited overlying the second layer of AlN by heating the substrate to the higher temperature range. Then, a grading Al1-XGaXN layer is formed overlying the third layer of AlN, where 0

    摘要翻译: 已经提供了使用多种铝化合物缓冲层的硅(Si)和氮化镓(GaN)膜之间的热膨胀界面,以及相关的制造方法。 该方法提供(111)Si衬底,并通过将衬底加热至1000至1200℃的较高温度,将衬底上的第一层AlN沉积在衬底上。在第一层AlN上沉积第二层AlN, 较低温度为500至800℃。通过将衬底加热到​​较高温度范围,沉积第三层AlN,覆盖第二层AlN。 然后,形成覆盖在第一层次Al1-XGaXN层上的固定组成Al1-XGaXN层的覆盖在第三层AlN上的分级Al1-XGaXN层,其中0

    Gallium nitride-on-silicon multilayered interface
    60.
    发明申请
    Gallium nitride-on-silicon multilayered interface 审中-公开
    氮化镓 - 硅多层界面

    公开(公告)号:US20080296625A1

    公开(公告)日:2008-12-04

    申请号:US11810022

    申请日:2007-06-04

    IPC分类号: H01L29/06 H01L21/20

    摘要: A multilayer thermal expansion interface between silicon (Si) and gallium nitride (GaN) films is provided, along with an associated fabrication method. The method provides a (111) Si substrate and forms a first layer of a first film overlying the substrate. The Si substrate is heated to a temperature in the range of about 300 to 800° C., and the first layer of a second film is formed in compression overlying the first layer of the first film. Using a lateral nanoheteroepitaxy overgrowth (LNEO) process, a first GaN layer is grown overlying the first layer of second film. Then, the above-mentioned processes are repeated: forming a second layer of first film; heating the substrate to a temperature in the range of about 300 to 800° C.; forming a second layer of second film in compression; and, growing a second GaN layer using the LNEO process.

    摘要翻译: 提供硅(Si)和氮化镓(GaN)膜之间的多层热膨胀界面以及相关的制造方法。 该方法提供(111)Si衬底并且形成覆盖衬底的第一膜的第一层。 将Si衬底加热至约300至800℃的温度,并且第二膜的第一层以压缩形式覆盖第一膜的第一层。 使用横向纳米外延过度生长(LNEO)工艺,生长第一GaN层,覆盖第一层第二层膜。 然后,重复上述过程:形成第二层第一膜; 将基板加热至约300至800℃的温度; 在压缩中形成第二层第二膜; 并且使用LNEO工艺生长第二GaN层。