摘要:
Optical coherence tomography (OCT) is an imaging method which can image with micrometer-scale resolution up to a few millimeters deep into, for example, living biological tissues and preserved tissue samples. An improved apparatus and image reconstruction algorithm for parallel Fourier Domain OCT which greatly eases requirements for interferometer stability and also allows for more efficient parallel image acquisition is provided. The apparatuses and algorithms reconstruct images from interfered, low-coherence, multiwave length signals having a .pi. radian phase difference relative to one another. Other numbers of signals and other phase differences may be alternatively used, with some combinations resulting in higher resolution and image stability. The apparatus also eliminates a need for bulk optics to modulate a phase delay in a reference arm of the optical path. Images may be reconstructed using two spectrometers, where each is coupled to a detector array such as a photodiode array.
摘要:
OCT imaging systems are provided for imaging a spherical-type eye including a source having an associated source arm path and a reference arm having an associated reference arm path coupled to the source path. The reference arm path has an associated reference arm path length. A sample is also provided having an associated sample arm path coupled to the source arm and reference arm paths. A lens having a focal power optimized for a diameter of the spherical-type eye is provided along with a reference arm path length adjustment module coupled to the reference arm. The reference arm path length adjustment module is configured to automatically adjust the reference arm path length such that the reference arm path length is based on an eye diameter of the subject.
摘要:
The present subject matter relates to in vivo volumetric bidirectional blood flow imaging using single-pass flow imaging spectral domain optical coherence tomography. This technique uses a modified Hilbert transform algorithm to separate moving and non-moving scatterers within a depth. The resulting reconstructed image maps the components of moving scatterers flowing into and out of the imaging axis onto opposite image halfplanes, enabling volumetric bidirectional flow mapping without manual segmentation.
摘要:
Methods and computer program products for quantitative three-dimensional (“3D”) image correction in optical coherence tomography. Using the methods and computer program products, index interface (refracting) surfaces from the raw optical coherence tomography (“OCT”) dataset from an OCT system can be segmented. Normal vectors or partial derivatives of the curvature at a refracting surface can be calculated to obtain a refracted image voxel. A new position of each desired refracted image voxel can be iteratively computed. New refracted corrected voxel positions to an even sampling grid can be interpolated to provide corrected image data. In some embodiments, clinical outputs from the corrected image data can be computed.
摘要:
Optical coherence tomography systems for imaging a whole eye are provided including a sample arm including focal optics that are configured to rapidly switch between at least two scanning modes in less than about 1.0 second.
摘要:
Systems for imaging structures of a subject are provided. The subject has an optical axis, a pupil, and a nodal point. The system includes an image capture device; a first structure including a mount for the subject to be imaged by the image capture device, the first structure providing at least two rotational degrees of freedom; a second structure including a mount for the image capture device, the second structure providing at least two translational degrees of freedom; and a means for aligning the image capture device in relation to the optical axis, the pupil, and the nodal point of the subject.
摘要:
Some embodiments of the present invention provide adapters for use in posterior imaging systems. The adapters include lens set configured to adapt the posterior imaging system to operate as an anterior imaging system. Related optical coherence tomography systems and anterior imaging systems are also provided herein.
摘要:
Methods of analyzing three dimensional data sets obtained from a sample over time are provided. A first three dimensional data set is obtained from the sample at a first time. A first volume intensity projection (VIP) image is created from the first three dimensional data set. One or more first landmarks are identified and registered in the first VIP image. A second three dimensional data set is obtained from the sample at a second time, different from the first time. A second VIP image is created from the second three dimensional data set. The one ore more first landmarks are identified and registered in the second VIP image. The first and second VIP images are aligned based on the registered one or more first landmarks in the first and second VIP images. Related systems and computer program products are also provided.
摘要:
Some embodiments of the present invention provide optical coherence tomography systems including an OCT engine and a processor. The OCT engine is configured to provide both standard OCT imaging and spectral domain phase microscopy (SDPM) imaging. The processor is coupled to the OCT engine and is configured to use a first signal processing method when the OCT engine is configured to provide standard OCT imaging and a second signal processing method when the OCT engine is configured to provide SDPM imaging. Related methods and computer program products are also provided.
摘要:
Methods, fourier domain optical coherence tomography (FDOCT) interferometers and computer program products are provided for removing undesired artifacts in FDOCT systems using continuous phase modulation. A variable phase delay is introduced between a reference arm and a sample arm of an FDOCT interferometer using continuous phase modulation. Two or more spectral interferograms having different phase delay integration times are generated. The spectral interferograms are combined using signal processing to remove the undesired artifacts. Systems and methods for switching between stepped and continuous phase shifting Fourier domain optical coherence tomography (FDOCT) and polarization-sensitive optical coherence tomography (PSOCT) are also provided herein.