摘要:
A device and method for inducing stress in a semiconductor layer includes providing a substrate having a dielectric layer formed between a first semiconductor layer and a second semiconductor layer and processing the second semiconductor layer to form an amorphized material. A stress layer is deposited on the first semiconductor layer. The wafer is annealed to memorize stress in the second semiconductor layer by recrystallizing the amorphized material.
摘要:
A fin field-effect transistor (finFET) device having reduced capacitance, access resistance, and contact resistance is formed. A buried oxide, a fin, a gate, and first spacers are provided. The fin is doped to form extension junctions extending under the gate. Second spacers are formed on top of the extension junctions. Each second spacer is adjacent to one of the first spacers to either side of the gate. The extension junctions and the buried oxide not protected by the gate, the first spacers, and the second spacers are etched back to create voids. The voids are filled with a semiconductor material such that a top surface of the semiconductor material extending below top surfaces of the extension junctions, to form recessed source-drain regions. A silicide layer is formed on the recessed source-drain regions, the extension junctions, and the gate not protected by the first spacers and the second spacers.
摘要:
Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
摘要:
A semiconductor device is provided that includes a gate structure present on a substrate. The gate structure includes a gate conductor with an undercut region in sidewalls of a first portion of the gate conductor, wherein a second portion of the gate conductor is present over the first portion of the gate conductor and includes a protruding portion over the undercut region. A spacer is adjacent to sidewalls of the gate structure, wherein the spacer includes an extending portion filling the undercut region. A raised source region and a raised drain region is present adjacent to the spacers. The raised source region and the raised drain region are separated from the gate conductor by the extending portion of the spacers.
摘要:
A method for forming an electrical device that includes forming a high-k gate dielectric layer over a semiconductor substrate that is patterned to separate a first portion of the high-k gate dielectric layer that is present on a first conductivity device region from a second portion of the high-k gate dielectric layer that is present on a second conductivity device region. A connecting gate conductor is formed on the first portion and the second portion of the high-k gate dielectric layer. The connecting gate conductor extends from the first conductivity device region over the isolation region to the second conductivity device region. One of the first conductivity device region and the second conductivity device region may then be exposed to an oxygen containing atmosphere. Exposure with the oxygen containing atmosphere modifies a threshold voltage of the semiconductor device that is exposed.
摘要:
A semiconductor structure includes a SOI substrate having a top silicon layer overlying an insulation layer, which overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, which device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlying the doped portion, the backside strap being coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlying the first portion.
摘要:
A structure and method to improve ETSOI MOSFET devices. A wafer is provided including regions with at least a first semiconductor layer overlying an oxide layer overlying a second semiconductor layer. The regions are separated by a STI which extends at least partially into the second semiconductor layer and is partially filled with a dielectric. A gate structure is formed over the first semiconductor layer and during the wet cleans involved, the STI divot erodes until it is at a level below the oxide layer. Another dielectric layer is deposited over the device and a hole is etched to reach source and drain regions. The hole is not fully landed, extending at least partially into the STI, and an insulating material is deposited in said hole.
摘要:
Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
摘要:
A method and structure for forming a field effect transistor with reduced contact resistance are provided. The reduced contact resistance is manifested by a reduced metal semiconductor alloy contact resistance and a reduced conductively filled via contact-to-metal semiconductor alloy contact resistance. The reduced contact resistance is achieved in this disclosure by texturing the surface of the transistor's source region and/or the transistor's drain region. Typically, both the source region and the drain region are textured in the present disclosure. The textured source region and/or the textured drain region have an increased area as compared to a conventional transistor that includes a flat source region and/or a flat drain region. A metal semiconductor alloy, e.g., a silicide, is formed on the textured surface of the source region and/or the textured surface of the drain region. A conductively filled via contact is formed atop the metal semiconductor alloy.
摘要:
A method of forming a complementary metal oxide semiconductor (CMOS) structure having multiple threshold voltage devices includes forming a first transistor device and a second transistor device on a semiconductor substrate. The first transistor device and second transistor device initially have sacrificial dummy gate structures. The sacrificial dummy gate structures are removed and a set of vertical oxide spacers are selectively formed for the first transistor device. The set of vertical oxide spacers are in direct contact with a gate dielectric layer of the first transistor device such that the first transistor device has a shifted threshold voltage with respect to the second transistor device.