摘要:
A coating process and system for an article having a substrate formed of a metal alloy that is prone to the formation of a secondary reaction zone (SRZ). The coating system includes an aluminum-containing overlay coating and a stabilizing layer between the overlay coating and the substrate. The overlay coating contains aluminum in an amount greater by atomic percent than the metal alloy of the substrate, such that there is a tendency for aluminum to diffuse from the overlay coating into the substrate. The stabilizing layer is predominantly or entirely formed of at least one platinum group metal (PGM), namely, platinum, rhodium, iridium, and/or palladium. The stabilizing layer is sufficient to inhibit diffusion of aluminum from the overlay coating into the substrate so that the substrate remains essentially free of an SRZ that would be deleterious to the mechanical properties of the alloy.
摘要:
A coating process and system suitable for use on components subjected to high temperatures. The coating system includes an overlay coating of predominantly B2 phase rhodium aluminide (RhAl) intermetallic compound containing about 25 to about 90 atomic percent rhodium, about 10 to about 60 atomic percent aluminum, optionally up to a combined total of about 25 atomic percent of one or more platinum group metals chosen from the group consisting of platinum, palladium, ruthenium, and iridium, and up to about 20 atomic percent of the base metal and alloying constituents of the substrate. The RhAl intermetallic coating may serve as an environmental coating, a diffusion barrier layer for an overlying environmental coating, or both, with or without an outer ceramic coating.
摘要:
A coating process and system suitable for use on components subjected to high temperatures. The coating system includes an overlay coating of predominantly B2 phase rhodium aluminide (RhAl) intermetallic compound containing about 25 to about 90 atomic percent rhodium, about 10 to about 60 atomic percent aluminum, optionally up to a combined total of about 25 atomic percent of one or more platinum group metals chosen from the group consisting of platinum, palladium, ruthenium, and iridium, and up to about 20 atomic percent of the base metal and alloying constituents of the substrate. The RhAl intermetallic coating may serve as an environmental coating, a diffusion barrier layer for an overlying environmental coating, or both, with or without an outer ceramic coating.
摘要:
A coating process and system suitable for use on components subjected to high temperatures. The coating system includes an overlay coating of predominantly B2 phase rhodium aluminide (RhAl) intermetallic compound containing about 25 to about 90 atomic percent rhodium, about 10 to about 60 atomic percent aluminum, optionally up to a combined total of about 25 atomic percent of one or more platinum group metals chosen from the group consisting of platinum, palladium, ruthenium, and iridium, and up to about 20 atomic percent of the base metal and alloying constituents of the substrate. The RhAl intermetallic coating may serve as an environmental coating, a diffusion barrier layer for an overlying environmental coating, or both, with or without an outer ceramic coating.
摘要:
A turbine engine component comprising a substrate made of a nickel-base or cobalt-base superalloy and a protective coating overlying the substrate, the coating formed by electroplating at least two platinum group metals selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium. The protective coating is typically heat treated to increase homogeneity of the coating and adherence with the substrate. The component typically further comprises a ceramic thermal barrier coating overlying the protective coating. Also disclosed are methods for forming the protective coating on the turbine engine component by electroplating the platinum group metals.
摘要:
A ceramic material suitable for use as a coating, such as a porous thermal barrier coating (TBC) on a component intended for use in a hostile thermal environments. The coating material consists essentially of zirconia stabilized by at least one rare-earth metal oxide and further alloyed to contain a limited amount of titania. Rare-earth metal oxides of particular interest are lanthana, ceria, neodymia, europia, gadolinia, erbia, dysprosia, and ytterbia, individually or in combination. Zirconia, the rare-earth metal oxide, and titania are present in the coating material in amounts to yield a predominantly tetragonal phase crystal structure. The amount of titania in the coating is tailored to allow higher levels of stabilizer while maintaining the tetragonal phase, i.e., avoiding the cubic (fluorite) phase.
摘要:
A ceramic material suitable for use as a coating, such as a porous thermal barrier coating (TBC) on a component intended for use in a hostile thermal environments. The coating material consists essentially of zirconia stabilized by at least one rare-earth metal oxide and further alloyed to contain a limited amount of titania. Rare-earth metal oxides of particular interest are lanthana, ceria, neodymia, europia, gadolinia, erbia, dysprosia, and ytterbia, individually or in combination. Zirconia, the rare-earth metal oxide, and titania are present in the coating material in amounts to yield a predominantly tetragonal phase crystal structure. The amount of titania in the coating is tailored to allow higher levels of stabilizer while maintaining the tetragonal phase, i.e., avoiding the cubic (fluorite) phase.
摘要:
A coating and process for depositing the coating on a substrate. The coating is a nickel aluminide overlay coating of predominantly the beta (NiAl) and gamma-prime (Ni3Al) intermetallic phases, and is suitable for use as an environmental coating and as a bond coat for a thermal barrier coating (TBC). The coating can be formed by depositing nickel and aluminum in appropriate amounts to yield the desired beta+gamma prime phase content. Alternatively, nickel and aluminum can be deposited so that the aluminum content of the coating exceeds the appropriate amount to yield the desired beta+gamma prime phase content, after which the coating is heat treated to diffuse the excess aluminum from the coating into the substrate to yield the desired beta+gamma prime phase content.
摘要:
A gas turbine engine component and coating system including a superalloy substrate having a coating system disposed thereon. A bond coating may be applied to the substrate. An adherent layer of ceramic material forming a thermal barrier coating is present on the bond coat layer. A topcoat layer overlies the thermal barrier coating. The topcoat layer includes greater than about 20 wt % yttria.
摘要:
A protected article is prepared by providing the article, depositing a bond coat onto an exposed surface of the article, and producing a thermal barrier coating on an exposed surface of the bond coat. The step of producing the thermal barrier coating includes the steps of depositing a primary ceramic coating onto an exposed surface of the bond coat, and depositing a stabilization composition onto an exposed surface of the primary ceramic coating. The stabilization composition includes a first element selected from Group 2 or Group 3 of the periodic table, and a second element selected from Group 5 of the periodic table. The atomic ratio of the amount of the first element to the amount of the second element is at least 1.3, more preferably at least 1:1.