摘要:
A crash energy absorption member formed from a tubular body for absorbing impact energy by buckling when it receives an impact load in the axial direction from one end in the axial direction. It has a transverse cross-sectional shape along at least a portion in the axial direction which is a closed cross section having a plurality of vertices in which there is no flange on the outside of the closed cross section, and in a region of at least one side of a basic cross section formed from the largest outline obtained by connecting a portion of the plurality of vertices by straight lines, a groove which is recessed towards the inside of the outline is provided in a location other than at an end point of the side. Thus, the crash energy absorption member can achieve a prescribed amount of shock absorption by stably buckling in the axial direction without bending and without an increase in weight due to the addition of a partition or due to an increase in plate thickness.
摘要:
The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of 0.005 to 10% (in terms of at %). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.
摘要:
The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of 0.005 to 10% (in terms of at %). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.
摘要:
An Ag sputtering target 6 has three-dimensional fluctuation of grain sizes of not more than 18%. The fluctuation is determined by exposing plural sputtering surfaces by slicing the sputtering target 6 in planes to initial sputtering surface, selecting plural locations on each of the exposed sputtering surfaces, calculating values A1 and B1 using the formula below, and selecting larger one of the values A1 and B1 as the three-dimensional fluctuation of the grain sizes. A1=(Dmax−Dave)/Dave×100(%) B1=(Dave−Dmin)/Dave×100(%) Dmax: maximum value among the grain sizes D at all the selected locations Dmin: minimum value among the grain sizes D at all the selected locations Dave: average value of the grain sizes D at all the selected locations
摘要:
The invention relates to an Al—Ni—La system Al-based alloy sputtering target where a total area of an Al—Ni system intermetallic compound having an average particle diameter of 0.3 μm to 3 μm with respect to a total area of the entire Al—Ni system intermetallic compound is 70% or more in terms of an area fraction, and a total area of an Al—La system intermetallic compound having an average particle diameter of 0.2 μm to 2 μm with respect to a total area of the entire Al—La system intermetallic compound is 70% or more in terms of an area fraction.
摘要:
Disclosed is a metal oxide-metal composite sputtering target which is useful for the formation of a recording layer for an optical information recording medium, said recording layer containing a metal oxide and a metal. Specifically disclosed is a composite sputtering target containing a metal oxide (A) and a metal (B), wherein the maximum value of the circle-equivalent diameter of the metal oxide (A) is controlled to 200 μm or less.
摘要:
An Ag sputtering target 6 has three-dimensional fluctuation of grain sizes of not more than 18%. The fluctuation is determined by exposing plural sputtering surfaces by slicing the sputtering target 6 in planes to initial sputtering surface, selecting plural locations on each of the exposed sputtering surfaces, calculating values A1 and B1 using the formula below, and selecting larger one of the values A1 and B1 as the three-dimensional fluctuation of the grain sizes. A1=(Dmax−Dave)/Dave×100(%) B1=(Dave
摘要:
The present invention has been completed in view of such situation, and an object of the present invention is to find a Ag based alloy which exhibits high cohesion resistance, high light resistance, high heat resistance, high reflectivity, high transmissivity, low absorptivity, and high thermal conductivity of the level which had not been realized by the pure Ag or by the conventional Ag alloys, and on the bases of such alloy, to provide a semi-reflective film and a reflective film for an optical information recording medium provided with excellent writing/reading properties and long term reliability; sputtering target for an optical information recording medium used in depositing such semi-reflective film and the reflective film; and an optical information recording medium provided with such semi-reflective film or the reflective film.A semi-reflective film or reflective film for an optical information recording medium comprising a Ag based alloy, wherein the Ag based alloy comprises 0.005 to 0.40% (at % unless otherwise noted) of Bi and 0.05 to 5% in total of at least one element selected from Zn, Al, Ga, In, Si, Ge, and Sn.
摘要:
The present invention provides a technique capable of decreasing a generation of splashing upon depositing by using an Al—Ni—La—Cu alloy sputtering target comprising Ni, La, and Cu. The invention relates to an Al—Ni—La—Cu alloy sputtering target comprising Ni, La and Cu, in which (1) a total area of an Al—Ni intermetallic compound mainly comprising Al and Ni and having an average grain size of 0.3 μm or more and 3 μm or less is 70% or more by area ratio based on an entire area of the Al—Ni intermetallic compound, and (2) a total area of an Al—La—Cu intermetallic compound mainly comprising Al, La and Cu and having an average grain size of 0.2 μm or more and 2 μm or less is 70% or more by area ratio based on an entire area of the Al—La—Cu intermetallic compound, in a case where a portion of the sputtering target is observed within a range of from 1/4 t (t: thickness) to 3/4 t along a cross section vertical to a plane of the sputtering target by using a scanning electron microscope at a magnification of 2000.
摘要:
The present invention provides an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target capable of decreasing a generation of splashing in an initial stage of using the sputtering target, preventing defects caused thereby in interconnection films or the like and improving a yield and operation performance of an FPD, as well as a manufacturing method thereof. The invention relates to an Al-based alloy sputtering target which is an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target comprising at least one member selected from the group A (Ni, Co), at least one member selected from the group B (Cu, Ge), and at least one member selected from the group C (La, Gd, Nd) wherein a Vickers hardness (HV) thereof is 35 or more.