摘要:
A system and method provide heart sound tracking, including an input circuit, configured to receive heart sound information, and a heart sound recognition circuit. The heart sound recognition circuit can be coupled to the input circuit and can be configured to recognize, within a particular heart sound of a particular heart sound waveform, a first intra heart sound energy indication and a corresponding first intra heart sound time indication using the heart sound information from the particular heart sound waveform and the heart sound information from at least one other heart sound waveform. The particular heart sound can include at least a portion of one of S1, S2, S3, and S4. Further, the first intra heart sound energy indication and the corresponding first intra heart sound time indication can correspond to the at least a portion of one of S1, S2, S3, and S4, respectively.
摘要:
The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
摘要:
A cardiac rhythm management system includes a heart sound detector providing for detection of the third heart sounds (S3). An implantable sensor such as an accelerometer or a microphone senses an acoustic signal indicative heart sounds including the second heart sounds (S2) and S3. The heart sound detector detects occurrences of S2 and starts S3 detection windows each after a predetermined delay after a detected occurrence of S2. The occurrences of S3 are then detected from the acoustic signal within the S3 detection windows.
摘要:
A cardiac rhythm management system includes a heart sound detector providing for detection of the third heart sounds (S3). An implantable sensor such as an accelerometer or a microphone senses an acoustic signal indicative heart sounds including the second heart sounds (S2) and S3. The heart sound detector detects occurrences of S2 and starts S3 detection windows each after a predetermined delay after a detected occurrence of S2. The occurrences of S3 are then detected from the acoustic signal within the S3 detection windows.
摘要:
The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
摘要:
An implantable activity detector can detect metabolic stress levels, which can be normalized, such as to identify times of activities such as walking and running or to identify trends such as a decrease in metabolic activity. The data can be derived from different sources such as an accelerometer and pedometer. This data can be compared to independently specifiable thresholds, such as to trigger an alert or responsive therapy, or to display one or more trends. The information can also be combined with other congestive heart failure (CHF) indications. The alert can notify the patient or a caregiver, such as via remote monitoring. Metabolic activity data from one or more of the activity detectors can be used to establish a model of metabolic stress, to which further activity data can be compared for identifying periods of increased or decreased metabolic stress.
摘要:
Systems and methods provide for detecting respiration disturbances and changes in respiration disturbances, preferably by detecting variability in one or more respiration parameters. Respiration rate variability is determined for a variety of diagnostic and therapeutic purposes, including disease/disorder detection, diagnosis, treatment, and therapy titration. Systems and methods provide for generating a footprint, such as a two- or three-dimensional histogram, representative of a patient's respiration parameter variability, and generating one or more indices representative of quantitative measurements of the footprint.
摘要:
A system, method, or device monitor a force-frequency relationship exhibited by a patient's heart. A contractility characteristic, such as a heart sound characteristic of an S1 heart sound, is measured. The contractility characteristic indicates the forcefulness of a contraction of the heart. The frequency at which the heart is contracting is determined. A group of (contractility characteristic, heart rate) pairs is stored in a memory device. The group of pairs defines a force-frequency relationship for the heart. The method may be implemented by an implantable device, or by a system including a implantable device.
摘要:
A system or method including a device configured to measure at least one pharmacological effect of a drug on a patient. The measured pharmacological effect is compared to an expected pharmacodynamic model. The system can allow for real-time monitoring of positive and side-effects of drugs as well as drug resistance to optimize individual therapy. The system can also enable patient compliance monitoring.
摘要:
A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.