摘要:
The present invention includes processes and resulting structures for producing a modified polymer having interconnecting channels. The interconnecting channels act as controlled transmission passages through the polymer. A hydrophilic agent is blended into the polymer so that it is distributed within the polymer. In one embodiment, a water-absorbing material is blended into the polymer so that the water-absorbing material is distributed within the product. The product is solidified so that the hydrophilic agent forms passages in the product through which a desired composition is communicable to the water-absorbing material that is entrained within the product. The solidified product may be used to form a desired shaped article such as plug type inserts and liners for closed containers, or it may be formed into a film, sheet, bead or pellet.
摘要:
The present invention relates to targeted polymerized liposomes for oral and/or mucosal delivery of vaccines, allergens and therapeutics. In particular, the present invention relates to polymerized liposomes which have been modified on their surface to contain a molecule or ligand which targets the polymerized liposome to a specific site or cell type. More particularly, the invention relates to the use of polymerized liposomes modified to contain a carbohydrate or lectin on their surface.
摘要:
Particles are provided that are not rapidly cleared from the blood stream by the macrophages of the reticuloendothelial system, and that can be modified to achieve variable release rates or to target specific cells or organs. The particles have a core of a multiblock copolymer formed by covalently linking a multifunctional compound with one or more hydrophobic polymers and one or more hydrophilic polymers, and contain a biologically active material. The terminal hydroxyl group of the poly(alkylene glycol) can be used to covalently attach onto the surface of the particles biologically active molecules, including antibodies targeted to specific cells or organs, or molecules affecting the charge, lipophilicity or hydrophilicity of the particle. The surface of the particle can also be modified by attaching biodegradable polymers of the same structure as those forming the core of the particles. The typical size of the particles is between 180 nm and 10,000 nm, preferably between 180 nm and 240 nm, although microparticles can also be formed as described herein. The particles can include magnetic particles or radiopaque materials for diagnostic imaging, biologically active molecules to be delivered to a site, or compounds for targeting the particles. The particles have a prolonged half-life in the blood compared to particles not containing poly(alkylene glycol) moieties on the surface.
摘要:
Compositions and methods for delivering agents across cell membranes are disclosed. The compositions include an agent to be delivered, a viscous material, such as a hydrogel, lipogel or viscous sol, and, optionally, a carrier that includes a ligand that binds to or interacts with cell surface receptors. The agent to be delivered binds to or otherwise interacts with cell surface receptors, is attached, either covalently or ionically to a molecule that binds to or interacts with a cell surface receptor, or is associated with the carrier. Agents to be delivered include bioactive compounds and diagnostic agents. The compositions have an apparent viscosity roughly equal to the viscosity of the cytosol in the cell to which the agent is to be delivered. The rate of cellular internalization is higher when the viscosity of the viscous material and that of the cytosol in the cell are approximately the same, relative to when they are not the same. The compositions enhance cellular entry of bioactive agents and diagnostic materials when administered vaginally, nasally, rectally ocularly, orally, or to the respiratory or pulmonary system.
摘要:
A method for preparation of multi-layer polymeric microspheres formed from any degradable or non-degradable polymers which are not soluble in each other at a particular concentration, but which have a positive spreading coefficient in solution. The multi-layer microspheres produced by the method are distinguished by extremely uniform dimensioned layers of polymer and actual incorporation of the substance to be delivered into the polymer layers. In the preferred embodiment of the method, two polymers are dissolved in a volatile organic solvent, the substance to be incorporated is dispersed or dissolved in the polymer solution, the mixture is suspended in an aqueous solution and stirred, and the solvent is slowly evaporated, creating microspheres with an inner core formed by one polymer and an outer layer formed by the second polymer. In another embodiment, solvent is removed by spray drying. In still another embodiment, polymers are melted and combined with the substance to be incorporated, then cooled to form layered microspheres.
摘要:
A method of modifying epidermis for transport of a material by electroporation includes applying to epidermis an agent that, upon entry into the epidermis, will modify the epidermis to thereby cause and altered rate of transport of a material across the epidermis. Typically, the altered rate will be an increased rate of transport. The epidermis is electroporated, whereby at least a portion of the modifying agent enters the electroporated epidermis, thereby modifying the epidermis to cause an altered rate of transport of a material across the epidermis. In another embodiment, the modifying agent can modify the epidermis to enable measurement and/or monitoring of physiological conditions or change within or beneath the epidermis. The modifying agents can also be employed to facilitate discharge of fluids from within an organism, such as by providing pathways for discharge of fluids from a tumor. Examples of modifying agents include: oxidizing agents; reducing agents; particles, such as optical indicator beads or beads that include drugs to be released into tissue; electrically-charged particles or molecules; etc. Materials that can be transported by the method of the invention include, for example, proteins, nucleic acids, electrically charged molecules or particles, microorganisms suitable for immunization, etc. Also, tissues other than skin can be employed in the method of the invention.
摘要:
Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and a mass mean diameter between 5 .mu.m and 30 .mu.m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear .alpha.-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 .mu.m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung. The aerodynamically light particles incorporating a therapeutic agent may be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of wide variety of therapeutic agents.
摘要:
Applications of low-frequency (20 KHz) ultrasound enhances transdermal transport of high-molecular weight proteins. This method includes a simultaneous application of ultrasound and protein on the skin surface in order to deliver therapeutic doses of proteins across the skin. Examples demonstrate in vitro and in vivo administration of insulin (molecular weight 6,000 D), and in vitro administration of gamma interferon (molecular weight 17,000 D), and erythropoeitin (molecular weight 48,000 D).
摘要:
A matrix structure containing attached cells such as endocrine cells, fibroblasts, endothelial cells or genitourinary cells is implanted in a patient adjacent tissue having a high surface area and vasculature such as mesentery, omentum or peritoneum tissue. Large volumes of cells can be attached to the matrix and the matrix implanted with minimum trauma and blood loss into a patient to produce a functional organ equivalent. Multiple matrix structures containing cells can be implanted to functionally resemble naturally occurring organs. Implanting multiple matrices between folds of the mesentery is particularly well suited for growth of endocrine structures, including liver, pancreas, and adrenal gland. The matrix structure is preferably formed from a biodegradable artificial polymer. Collagen and non-biodegradable materials can also be used, and the matrix structure can be overlaid with a material that enhances cell attachment. Materials such as angiogenesis factors can be incorporated into a matrix and implanted prior to implanting the matrix containing cells or the materials can be incorporated into the matrix containing cells. Cells attached to the matrix may be cultured in vitro prior to implanting. Matrix structures containing different types of cells can be implanted juxtapositioned with each other.
摘要:
A method for preparation of biodegradable polymeric drug delivery devices using relatively low temperatures and non-aqueous solutions which is particularly useful with polyanhydrides, thermolabile drugs, and in forming multi-layered devices. In a first embodiment, the polymer is dissolved in a volatile organic solvent, the drug is dispersed or dissolved in the polymer solution, the mixture is suspended in an organic oil, and the organic solvent is extracted into the oil, creating microspheres. The preferred polymers are polyanhydrides since they are biodegradable and have been proven to be useful in vivo. In a second embodiment, the polymer is dissolved in organic solvent with or without the drug, and the mixture is suspended in glycerol. The suspension is frozen and the organic solvent slowly evaporated. Using these embodiments, alone or in combination with other methods including the "hot melt" technique, multi-walled microspheres having each wall degrading at a different rate or containing different drugs can be manufactured.