Abstract:
A method of fabricating polysilicon gate structure in an image sensor device includes depositing a gate dielectric layer on a surface of a substrate. Then a polysilicon layer is deposited over the gate dielectric layer. Next, a protection film is deposited over the polysilicon layer. A hard mask is formed over the protection film, and the polysilicon gate structure is patterned. Following that, the hard mask is stripped off. The protection film exhibits etching selectivity against the polysilicon layer and has a thickness of between 40 and 60 angstroms. The hard mask is removed by phosphoric acid solution wet etching process.
Abstract:
In some embodiments, the present disclosure relates to a method of forming a back-side image (BSI) sensor. The method may be performed by forming an image sensing element within a substrate and forming a pixel-level memory node at a position within the substrate that is laterally offset from the image sensing element. A back-side of the substrate is etched to form one or more trenches that are laterally separated from the image sensing element by the substrate and that vertically overlie the pixel-level memory node. A reflective material is formed within the one or more trenches.
Abstract:
The present disclosure relates to an integrated circuit, and an associated method of formation. In some embodiments, the integrated circuit comprises a deep trench grid disposed at a back side of a substrate. A passivation layer lines the deep trench grid within the substrate. The passivation layer includes a first high-k dielectric layer and a second high-k dielectric layer disposed over the first high-k dielectric layer. A first dielectric layer is disposed over the passivation layer, lining the deep trench grid and extending over an upper surface of the substrate. A second dielectric layer is disposed over the first dielectric layer and enclosing remaining spaces of the deep trench grid to form air-gaps at lower portions of the deep trench grid. The air-gaps are sealed by the first dielectric layer or the second dielectric layer below the upper surface of the substrate.
Abstract:
In some embodiments, the present disclosure relates to a back-side image (BSI) sensor having a global shutter pixel with a reflective material that prevents contamination of a pixel-level memory node. In some embodiments, the BSI image sensor has an image sensing element arranged within a semiconductor substrate and a pixel-level memory node arranged within the semiconductor substrate at a location laterally offset from the image sensing element. A reflective material is also arranged within the semiconductor substrate at a location between the pixel-level memory node and a back-side of the semiconductor substrate. The reflective material has an aperture that overlies the image sensing element. The reflective material allows incident radiation to reach the image sensing element while preventing the incident radiation from reaching the pixel-level memory node, thereby preventing contamination of the pixel-level memory node.
Abstract:
In some embodiments, the present disclosure relates to a back-side image (BSI) sensor having a global shutter pixel with a reflective material that prevents contamination of a pixel-level memory node. In some embodiments, the BSI image sensor has an image sensing element arranged within a semiconductor substrate and a pixel-level memory node arranged within the semiconductor substrate at a location laterally offset from the image sensing element. A reflective material is also arranged within the semiconductor substrate at a location between the pixel-level memory node and a back-side of the semiconductor substrate. The reflective material has an aperture that overlies the image sensing element. The reflective material allows incident radiation to reach the image sensing element while preventing the incident radiation from reaching the pixel-level memory node, thereby preventing contamination of the pixel-level memory node.
Abstract:
A pad structure for a complementary metal-oxide-semiconductor (CMOS) image sensor is provided. A semiconductor substrate is arranged over a back end of line (BEOL) metallization stack, and comprises a scribe line opening. A buffer layer lines the scribe line opening. A conductive pad comprises a base region and a protruding region. The base region is arranged over the buffer layer in the scribe line opening, and the protruding region protrudes from the base region into the BEOL metallization stack. A dielectric layer fills the scribe line opening over the conductive pad, and is substantially flush with an upper surface of the semiconductor substrate. Further, a method for manufacturing the pad structure, as well as the CMOS image sensor, are provided.