Abstract:
A method for treating a liquid is disclosed using an apparatus having: (a) a pump volute or hydrocyclone, (b) a throat connected to the pump volute or hydrocyclone head, (c) a parabolic reflector having a vertex, a focus and an opening at the vertex, wherein the opening is connected to the throat such that the vertex and focus are axially aligned with the central axis and the focus is not located within the throat, and (d) a wave energy source having a first electrode within the pump volute or hydrocyclone head that extends into the throat along the central axis of the throat, and a second electrode extending into the parabolic reflector proximate to the focus wherein the second electrode is spaced apart and axially aligned with first electrode. The liquid is supplied to the pump volute or hydrocyclone head and is irradiated by the wave energy source.
Abstract:
An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
Abstract:
An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
Abstract:
A method of and apparatus for treating liquids flowing in a thin film around a source of wave energy to directly expose the liquid to the wave energy, preferably generated in whole or part by an electrical arc between carbon electrodes. In addition to the wave energy generated by the electrical arc, energy generated by cavitation of the flowing liquid may be used in treating the liquid.
Abstract:
The present invention provides a glow discharge cell comprising an electrically conductive cylindrical vessel having a first end and a second end, and at least one inlet and one outlet; a hollow electrode aligned with a longitudinal axis of the cylindrical vessel and extending at least from the first end to the second end of the cylindrical vessel, wherein the hollow electrode has an inlet and an outlet; a first insulator that seals the first end of the cylindrical vessel around the hollow electrode and maintains a substantially equidistant gap between the cylindrical vessel and the hollow electrode; a second insulator that seals the second end of the cylindrical vessel around the hollow electrode and maintains the substantially equidistant gap between the cylindrical vessel and the hollow electrode; a non-conductive granular material disposed within the gap, wherein the non-conductive granular material (a) allows an electrically conductive fluid to flow between the cylindrical vessel and the hollow electrode, and (b) prevents electrical arcing between the cylindrical vessel and the hollow electrode during a electric glow discharge; and wherein the electric glow discharge is created whenever: (a) the glow discharge cell is connected to an electrical power source such that the cylindrical vessel is an anode and the hollow electrode is a cathode, and (b) the electrically conductive fluid is introduced into the gap.
Abstract:
A method of and apparatus for treating liquids flowing in a thin film around a source of wave energy to directly exposes the liquid to the wave energy, preferably generated in whole or part by an electrical arc between carbon electrodes. In addition to the wave energy generated by the electrical arc, energy generated by cavitation of the flowing liquid may be used in treating the liquid.