摘要:
A method for manufacturing a magnetic write head having a write pole with a tapered trailing edge step. The resulting tapered trailing edge step maximizes write field at very small bit sizes by preventing the magnetic saturation of the write pole at the pole tip. The method includes depositing a magnetic write pole material and then depositing a magnetic material over the magnetic write pole material. A RIE mask and hard mask are deposited over the magnetic bump material. A resist mask is formed over the RIE mask and hard mask, and a reactive ion etching is performed to transfer the pattern of the resist mask onto the underlying hard mask. Then an ion milling is performed to form a the magnetic step layer with a tapered edge that defines a tapered trailing edge step structure of the write pole.
摘要:
A method for manufacturing a magnetic write pole and trailing wrap around magnetic shield for use in a perpendicular magnetic data recording system. The method includes the use of a hard mask structure with end point detection material embedded in a hard mask material. The novel hard mask structure provides the mill resistance of a hard mask, with the end point detection advantages of an end point detection layer.
摘要:
After defining the P2 pole of a magnetic read head, alumina is deposited over it and planarized by CMP, with the portion of the alumina overlaying the ABS region of the P2 pole subsequently being masked by a photoresist layer and with the portions of the alumina overlaying the flare area, back gap region, and center tap regions of the P2 pole not being masked. A reactive ion mill is performed to expose the flare area, back gap region, and center tap regions of the P2 pole by removing the alumina over these portions, so that subsequent steps such as forming a layer of coiled conductors, forming a return pole, and forming stud connections along with removing the respective seed layers can be executed with the ABS region protected by the alumina and with the flare area, back gap region, and center tap region exposed.
摘要:
A method for forming a high aspect ratio magnetic structure in a magnetic write head using a combination of chemical mechanical polishing and reactive ion etching.
摘要:
A method for manufacturing a magnetic write head for magnetic data recording. The method includes forming a depositing a magnetic write pole material and forming a mask structure over the write pole material that includes a polymer mask under-layer, a dielectric hard mask formed over the polymer mask under-layer and a photoresist mask formed over the dielectric hard mask. The image of the photoresist mask is transferred onto the underlying dielectric hard mask and then a reactive ion etching is performed to transfer the image of the dielectric hard mask onto the polymer mask under-layer. This reactive ion etching is performed in an atmosphere chemistry that includes both an oxygen containing gas and a nitrogen containing gas.
摘要:
A method for manufacturing a magnetic write head having a non-magnetic step layer, non-magnetic bump at the front of the non-magnetic step layer and a write pole with a tapered trailing edge. The tapered portion of the trailing edge of the write pole is formed by a two step process that allows the write pole taper to be formed with greater accuracy and repeatability than would be possible using a single step taper process. An alternative method is also described on how to make a non-magnetic bump structure with adjustable bump throat height prior to Damascene side shield gap formation in a Damascene wrap around shield head.
摘要:
A magnetic write head having a magnetic write pole with a wrap around magnetic trailing shield. The wrap around magnetic trailing shield is separated by a first non-magnetic side gap at a first side of the write pole and by a second non-magnetic side gap at a second side of the write pole. The first second non-magnetic side gap is larger than the first non-magnetic side gap and is preferably at least twice the thickness of the first non-magnetic side gap. This design provides additional protection adjacent track interference at one side of the write pole and additional protection against magnetic write field loss at the other side of the write pole.
摘要:
A method for manufacturing a magnetic write head having a that has a write pole with a tapered trailing edge in a pole tip region, and a trailing shield that has a leading edge that tapers away from the write pole at an angle that is greater than that taper angle of the trailing edge of the write pole. The magnetic head has a step feature with a front edge that is recessed from the ABS. In one embodiment a magnetic wedge is formed over the tapered surface of the write pole. In another embodiment, a non-magnetic bump is formed over a first tapered portion of the write pole adjacent to the front edge of the step feature, and a non-magnetic wedge is formed over a second tapered portion of the write pole and extends from the non-magnetic bump to the air bearing surface.
摘要:
A method for manufacturing a magnetic write head having a tapered write pole as well as a leading edge taper, and independent trailing and side magnetic shields. The method allows the write pole to be constructed by a dry process wherein the write pole material is either deposited by a process such as sputter deposition or electrically plated and the write pole shape is defined by masking and ion milling. The write pole has a stepped feature that can either be used to provide increased magnetic spacing between the trailing shield and the write pole at a location slightly recessed from the ABS or can be magnetic material that increases the effective thickness of the write pole at a location slightly recessed from the ABS. A bump structure can be further built over that stepped feature to enhance field gradient as well as reduce trailing shield saturation. Because the trailing and side shields are formed independently, they can be made of different materials and with different throat heights.
摘要:
A method for manufacturing a magnetic write head having a write pole with a tapered leading edge and a tapered trailing edge. The method includes forming a non-magnetic bump player over a surface, forming a mask over the non-magnetic bump layer and performing a first ion milling to form a tapered back edge on the non-magnetic bump layer. A magnetic write pole material is then deposited over the surface and over the non-magnetic bump layer. Then a non-magnetic step structure is formed over the magnetic write pole material and an ion milling is performed to form a taper on the upper surface of the write pole. The write pole lateral dimensions can then be defined, and a non-magnetic bump formed over the tapered portion of the upper surface of the write pole. Another ion milling can then be performed to extend the taper of the surface of the write pole.