摘要:
A method for forming a trimmed upper pole piece for a magnetic write head, said pole piece having a uniform width above and below a write gap layer. Prior art methods of trimming pole pieces to a final width using ion-beam etches produce pole pieces with thickness differentials due to the etch resistant nature of the alumina write-gap filling material. The present method uses NiCr, NiFeCr or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant.
摘要:
A Spin Valve GMR and Spin Filter SVGMR configuration where in the first embodiment an important buffer layer is composed of an metal oxide having a crystal lattice constant that is close the 1st FM free layer's crystal lattice constant and has the same crystal structure (e.g., FCC, BCC, etc.). The metal oxide buffer layer enhances the specular scattering. The spin valve giant magnetoresistance (SVGMR) sensor comprises: a seed layer over the substrate. An important metal oxide buffer layer (buffer layer) over the seed layer. The metal oxide layer preferably is comprised of NiO or alpha-Fe2O3. A free ferromagnetic layer over the metal oxide layer. A non-magnetic conductor spacer layer over the free ferromagnetic layer. A pinned ferromagnetic layer (2nd FM pinned) over the non-magnetic conductor spacer layer and a pinning material layer over the pinned ferromagnetic layer. In the second embodiment, a high conductivity layer (HCL) is formed over the buffer layer to create a spin filter -SVGMR. The HCL layer enhances the GMR ratio of the spin filter SVGMR. The third embodiment is a pinned FM layer comprised of a three layer structure of an lower AP layer, a spacer layer (e.g., Ru) and an upper AP layer.
摘要:
A lead structure for use with a magneto-resistive sensing element in a magnetic disk system is described. The lead structure comprises a layer of ruthenium or rhodium sandwiched between layers of a nickel-chromium alloy. The lower nickel-chromium layer acts as a seed layer to ensure that the ruthenium and rhodium layers have crystal structures that correspond to low resistivity phases. The interfaces between these three layers introduce a minimum of interfacial scattering of the conduction electrons thereby keeping dimensional increases in resistivity to a minimum.
摘要:
A giant magneto-resistive head is provided which includes a novel high data-rate stitched pole inductive magnetic write head. The write head incorporates a non-magnetic spacer layer and a magnetic pole yoke that is recessed from the magnetic pole tip. The spacer layer shortens the throat height of the write head, reduces its saturation write current, and improves its overwrite and side erasure performance.
摘要:
A high data-rate stitched pole inductive magnetic write head incorporating a non-magnetic spacer layer and a magnetic pole yoke that is recessed from the magnetic pole tip. Said spacer layer is deposited as part of a self-aligned, patterned photoresist process, wherein the spacer layer is deposited first and the P2 portion of the upper pole assembly is then plated over it to form the pole tip configuration. Increasing the thickness of the spacer layer, while keeping it within a specified tolerance range, allows the upper stitched P3 portion of the pole piece to be recessed relative to the tip of P2. The spacer layer shortens throat height, reduces saturation write current, and improves overwrite and side erasure performance.
摘要:
A longitudinally magnetically biased dual stripe magnetoresistive (DSMR) sensor element comprises a first patterned magnetoresistive (MR) layer. There are contacts at the opposite ends of the patterned magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer, each of the stacks including a first Anti-Ferro-Magnetic (AFM) layer and a first lead layer. With the first MR layer in place the device was annealed in the presence of a longitudinal external magnetic field. A second patterned magnetoresistive (MR) layer was formed above the previous structure. There are contacts at the opposite ends of the second patterned magnetoresistive (MR) layer with a second pair of stacks defining a second track width of the second patterned magnetoresistive (MR) layer. Each of the second pair of stacks includes spacer layer is composed of a metal, a Ferro-Magnetic (FM) layer, a second Anti-Ferro-Magnetic (AFM) layer and a second lead layer. With the second MR layer in place, the device was annealed in the presence of a second longitudinal external magnetic field.
摘要:
A merged read/write magnetic recording head comprises a low magnetic moment first magnetic shield layer over a substrate. A read gap layer with a magnetoresistive head is formed over the first shield layer. A shared pole comprises a low magnetic moment second magnetic shield layer plated on a sputtered seed PLM layer over the read gap layer, a non-magnetic layer plated over the PLM layer and a HMM lower pole layer plated over the second magnetic shield layer. A write gap layer is formed over the first high magnetic moment pole layer of the shared pole. An upper pole comprises a high magnetic moment pole layer over the write gap layer.
摘要:
A method for fabricating a soft adjacent layer (SAL) magnetoresistive (MR) sensor element and several soft adjacent layer (SAL) magnetoresistive (MR) sensor elements which may be fabricated employing the method. There is first provided a substrate. There is formed over the substrate a dielectric layer, where the dielectric layer has a first surface of the dielectric layer and a second surface of the dielectric layer opposite the first surface of the dielectric layer. There is also formed over the substrate a magnetoresistive (MR) layer contacting the first surface of the dielectric layer. There is also formed over the substrate a soft adjacent layer (SAL), where the soft adjacent layer (SAL) has a first surface of the soft adjacent layer (SAL) and a second surface of the soft adjacent layer (SAL). The first surface of the soft adjacent layer (SAL) contacts the second surface of the dielectric layer. Finally, there is also formed over the substrate a transverse magnetic biasing layer, where the transverse magnetic biasing layer contacts the second surface of the soft adjacent layer (SAL), and where at least one of the dielectric layer, the magnetoresistive (MR) layer, the soft adjacent layer (SAL) and the transverse magnetic biasing layer is a patterned layer formed employing an etch mask which serves as a lift-off stencil for forming a patterned second dielectric layer adjoining an edge of the patterned layer. The invention also contemplates a soft adjacent layer (SAL) magnetoresistive (MR) sensor element formed with the magnetoresistive (MR) layer interposed between the substrate and the soft adjacent layer (SAL). Similarly, the invention also contemplates a soft adjacent layer (SAL) magnetoresistive (MR) sensor element employing a transverse magnetic biasing layer formed of a hard bias permanent magnet material.
摘要:
A method of manufacturing a magnetic transducer structure using a special pole etch using an IBE preferably with Kr or Xe, and a write gap material with a high IBE etch rate such as Ta, NiCu alloys, Pd, Pd—Cu alloys. A first layer of pole material and a write gap insulating layer are formed over the substrate. The write gap layer is composed of a material having a high ion beam etch rate compared to the first and second layers of pole material. The write gap insulating layer is preferably composed of Ni—Cu alloy, Pd, Pd—Cu alloys. Next, a second layer of pole material is formed on the first insulating layer. In a key step, we ion beam etch (IBE) the second pole; the write gap insulating layer and the first layer; the second pole serving as an etch mask during the ion beam etching to form a head. In a second preferred embodiment of the invention, the ion beam etching performed using a gas of Kr or Xe. The invention teaches a high IBE etch selectivity from the write gap dielectric to the upper pole (NeFe) for partial pole trim (PPT) applications by three embodiments: (a) selecting high IBE rate gap dielectric materials (e.g., NiCu alloys, Pd, and Pd—Cu alloys, (b) using an IBE gas Kr or Xr or both, instead of Ar, and (c) both (a) and (b).
摘要:
A soft adjacent layer (SAL) magnetoresistive (MR) sensor element and a method for fabricating the soft adjacent layer (SAL) magnetoresistive (MR) sensor element. To practice the method, there is first provided a substrate. There is then formed over the substrate a soft adjacent layer (SAL). There is then formed upon the soft adjacent layer (SAL) a dielectric layer. There is then formed at least in part contacting the dielectric layer a magnetoresistive (MR) layer, where the soft adjacent layer (SAL) and the dielectric layer are planar. The method contemplates the soft adjacent layer (SAL) magnetoresistive (MR) sensor element formed through the method.