摘要:
Field effect transistors, methods of fabricating a carbon insulating layer using molecular beam epitaxy and methods of fabricating a field effect transistor using the same are provided, the methods of fabricating the carbon insulating layer include maintaining a substrate disposed in a molecular beam epitaxy chamber at a temperature in a range of about 300° C. to about 500° C. and maintaining the chamber in vacuum of 10−11 Torr or less prior to performing an epitaxy process, and supplying a carbon source to the chamber to form a carbon insulating layer on the substrate. The carbon insulating layer is formed of diamond-like carbon and tetrahedral amorphous carbon.
摘要:
A method of manufacturing a nanochannel-array and a method of fabricating a nanodot using the nanochannel-array are provided. The nanochannel-array manufacturing method includes: performing first anodizing to form a first alumina layer having a channel array formed by a plurality of cavities on an aluminum substrate; etching the first alumina layer to a predetermined depth and forming a plurality of concave portions on the aluminum substrate, wherein each concave portion corresponds to the bottom of each channel of the first alumina layer; and performing second anodizing to form a second alumina layer having an array of a plurality of channels corresponding to the plurality of concave portions on the aluminum substrate. The array manufacturing method makes it possible to obtain finely ordered cavities and form nanoscale dots using the cavities.
摘要:
Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.
摘要:
A magnetic memory device includes a lower structure or an antiferromagnetic layer, a pinned layer, an information storage layer, and a free layer formed on the lower structure or the antiferromagnetic layer. In a method of operating a magnetic memory device, information from the storage information layer is read or stored after setting the magnetization of the free layer in a first magnetization direction. The information is stored when the first magnetization direction is opposite to a magnetization direction of the pinned layer, but is read when the first magnetization direction is the same as the magnetization direction of the pinned layer.
摘要:
Provided are a magnetic track using magnetic domain wall movement and an information storage device including the same. A magnetic track may comprise a zigzag shaped storage track including a plurality of first magnetic layers in parallel with each other, and stacked separate from each other, and a plurality of second magnetic layers for connecting the plurality of first magnetic layers. The information storage device may include the magnetic track having a plurality of magnetic domains, current applying device connected to the magnetic track, and a read/write device on a middle portion of the magnetic track.
摘要:
Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.
摘要:
Disclosed are a multi-bit non-volatile memory device, a method of operating the same, and a method of manufacturing the multi-bit non-volatile memory device. A unit cell of the multi-bit non-volatile memory device may be formed on a semiconductor substrate may include: a plurality of channels disposed perpendicularly to the upper surface of the semiconductor substrate; a plurality of storage nodes disposed on opposite sides of the channels perpendicularly the upper surface of the semiconductor substrate; a control gate surrounding upper portions of the channels and the storage nodes, and side surfaces of the storage nodes; and an insulating film formed between the channels and the storage nodes, between the channels and the control gate, and between the storage nodes and the control gate.
摘要:
Disclosed are a muli-bit non-volatile memory device, a method of operating the same, and a method of manufacturing the multi-bit non-volatile memory device. A unit cell of the muli-bit non-volatile memory device may be formed on a semiconductor substrate may include: a plurality of channels disposed perpendicularly to the upper surface of the semiconductor substrate; a plurality of storage nodes disposed on opposite sides of the channels perpendicularly the upper surface of the semiconductor substrate; a control gate surrounding upper portions of the channels and the storage nodes, and side surfaces of the storage nodes; and an insulating film formed between the channels and the storage nodes, between the channels and the control gate, and between the storage nodes and the control gate.
摘要:
A method of fabricating memory with nano dots includes sequentially depositing a first insulating layer, a charge storage layer, a sacrificial layer, and a metal layer on a substrate in which source and drain electrodes are formed, forming a plurality of holes on the resultant structure by anodizing the metal layer and oxidizing portions of the sacrificial layer that are exposed through the holes, patterning the charge storage layer to have nano dots by removing the oxidized metal layer, and etching the sacrificial layer and the charge storage layer using the oxidized sacrificial layer as a mask, and removing the oxidized sacrificial layer, depositing a second insulating layer and a gate electrode on the patterned charge storage layer, and patterning the first insulating layer, the patterned charge storage layer, the second insulating layer, and the gate electrode to a predetermined shape, for forming memory having uniformly distributed nano-scale storage nodes.
摘要:
An oscillator generates a signal using precession of a magnetic moment of a magnetic domain wall. The oscillator includes a free layer having the magnetic domain wall and a fixed layer corresponding to the magnetic domain wall. A non-magnetic separation layer is interposed between the free layer and the fixed layer.