Abstract:
Determination of Analytes in a Sample Matrix by Solvent Extraction A method for the assay of one or more analytes in a sample matrix comprising the steps of: performing analyte extraction on the sample matrix, said analyte extraction comprising combining the sample matrix with a solvent for an extraction period which is less than that required for reaching equilibrium; and separating the analyte containing solvent from the sample matrix; next measuring a level of analyte present in the separated solvent; and then applying in a computer a calibration by which is established a mathematical relationship between levels of analyte extracted from each of a plurality of reference samples by means of the process employed above in the extraction for the sample matrix and a reference value of the levels of analyte for each reference sample to thereby derive a measure of the level of analyte in the sample matrix. Specifically a method to determine the amount of mycotoxins in cereal grain, especially OTA (ochratoxin A) and DON (deoxynivalenol) by mixing with a solvent comprising water alcohol mixture, with 20-40% ethanol by volume.
Abstract:
A spectrometer system comprises a scanning interferometer; a drive system mechanically coupled to a movable reflector element of the scanning interferometer and operable to effect reciprocation of the movable reflector element at a plurality, preferably more than two, for example three, different scan speeds; a detector arrangement configured to sample at equidistant time intervals an interferogram formed by the scanning interferometer to generate a sampled interferogram; and a data processor is adapted to acquire a sampled interferogram at each of the plurality of different scan speeds and to perform a relative comparison of the content of the so acquired plurality of sampled interferograms.
Abstract:
A meat processing device comprises a meat processing unit and an external X-ray meat analyzer provided with a housing formed with an inlet connectable with an outlet of the processing unit. The housing provides complete shielding of personnel from X-rays except towards the inlet and is movable relative to the processing unit to a first position for analysis at which the unit outlet is collocated with the inlet and at which the processing unit completes the shielding of personnel from X-rays towards the inlet.
Abstract:
A method of determining a constituent related sample property of a multi-constituent sample comprising: subjecting the sample to a perturbation selected to induce a time dependent change in measurement data associated with a constituent related to the sample property to be determined; recording a time-series of measurement data following subjecting the sample to the perturbation; and determining the sample property from the application to the recorded time-series of measurement data of a calibration correlating the sample property with time-series of measurement data, said calibration being empirically derived from chemometric time-series modelling of time-series measurement data recorded for each of a plurality of reference samples following subjecting each reference sample to the perturbation, each reference sample having a different known values of the sample property.
Abstract:
A system (102) for determining properties of a sample (114) comprises a LIBS detector (104,106) and an infra-red absorption detector (108,110) for interrogating a sample (114) to generate LIBS spectral data and infra-red absorption spectral data respectively; and a data processor (112) adapted to apply at least one chemometric prediction model, each constructed to link, preferably quantitatively link, features of both LIBS and absorption spectral data to a different specific property of the sample, to a combined dataset derived from at least portions of both the LIBS and the absorption data to generate therefrom a determination, preferably a quantitative determination, of the specific property linked by that model.
Abstract:
A microfluidic impedance flow cytometer (‘MIC’) device (2) comprises a substrate (4) in which is formed at least one flow channel (6) for leading through a particle (22) containing fluidic sample. The flow channel (6) is formed with a focusing zone (12) and a measurement zone (14) located downstream of the focusing zone (12) in the direction of through flow and provided with an electrode arrangement (18) for characterising particles (22) in the flowing fluidic sample by means of electrical impedance wherein an acoustophoretic particle focusing arrangement (20) is provided in acoustic coupling to the flow channel (6) in the focusing zone (12) to induce acoustic forces in fluid in the flow channel (6) so as to effect a lateral and/or vertical focusing of particles before flowing to the measurement zone (14).
Abstract:
A spectrometric instrument comprising: a scanning interferometer having a beamsplitter for dividing incident optical radiation into a reflected beam, following a reflected beam path and a transmitted beam following a transmitted beam path; a monochromatic optical radiation source for launching a reference beam into the interferometer along a first propagation path to be initially incident on a first face of the beamsplitter; an observation optical radiation source for launching a divergent observation beam into the interferometer along a second propagation path to be initially incident on the first face of beamsplitter and overlap the reference beam at the first face; wherein the radiation sources cooperate to generate a first angle between the directions of propagation of the two beams along respective first and second propagation paths when initially and simultaneously incident at the first face which is larger than a divergence half-angle of the observation beam 64.
Abstract:
A probe having a probe head in which is formed an opening for receiving a sample to be analysed, the head comprising a pair of optical interfaces disposed at an opposing inner surface of the opening to delimit a path for optical radiation through the opening, wherein one of the pair of optical interfaces comprises a transparent element adapted to permit optical radiation in one or more wavelength regions of interest to travel between the probe head and the opening, the optical probe comprising a movable diaphragm in which one of the pair of optical interfaces is located for movement therewith and an actuator operably connected to the diaphragm to control its movement so as to vary the path length wherein the probe head comprises a hinge system cooperable with the actuator to move the optical interface in the movable diaphragm in an arc to vary the path length.
Abstract:
The invention relates to a device for manipulation of particles (30) in a sample liquid (32) said device comprising a source of ultrasound (16) capable of emitting ultrasound with a given wavelength, an inlet for a sample liquid (2), one or more outlets (4, 5, 6) and a compartment (14), being dimensioned to support a standing ultrasonic wave (40) of said wavelength, characterised in that the device further comprises an inlet for sheath liquid (1, 3) configured to direct a sheath liquid (34) to extend substantially in parallel to an anti-node plane (46) of the ultrasonic standing wave (40) proximate to a sheathed compartment wall. Specifically the device may be used in combination with a particle enumeration device for enumeration of somatic cells in milk.
Abstract:
The content of casein in milk is determined by two measurements of infrared absorbance in a milk sample by infrared spectrometry before and after a separation of the casein. The casein content is calculated by use of absorbance data recorded during the two absorbance measurements. The new method is considerable faster than the known wet-chemical methods, such as the normal wet chemical reference method for casein determination in milk using a Kjeldahl nitrogen determination of the milk sample, then a coagulation of the milk, and finally a Kjeldahl nitrogen determination of the filtrate. Further the new method provides a more reliable accuracy than the know determination using a single infrared analysis of a milk sample.