Abstract:
A urethral inserted applicator for prostate hyperthermia includes a multi-tube, balloon type catheter. The catheter includes first and second closed end fluid dry tubes, respectively, for a helical coil electrode type applicator, and an electromagnetic field compatible temperature sensor for measuring the temperature of the prostate tissue, and an open fluid receiving tube enabling urine drainage from the bladder. A radiofrequency source supplies electromagnetic energy to the applicator. A control unit contains a comparator which is connected to the temperature sensor and a temperature reference device for comparing the actual tissue temperature level with a desired temperature level and output control signals to the radiofrequency generator for controlling the output to the applicator. The coil type applicator is an elongated coil connected to the center conductor of a coaxial cable. A second electrode is connected to the outer conductor of the connecting cable providing a ground current return of the heating current. A sheet or sheath of insulation material covers the coil electrode for insulating the coil from the tissue and the thickness of the sheet may be varied to provide uniform tissue heating along the length of the coil. The balloon of the catheter engages the body's bladder to position the applicator properly during the treatment.
Abstract:
Systems for enabling delivery of very high peak power laser pulses through optical fibers for use in ablation procedures preferably in contact mode. Such lasers advantageously emit at 355 nm wavelength. Other systems enable selective removal of undesired tissue within a blood vessel, while minimizing the risk of damaging the blood vessel itself, based on the use of the ablative properties of short laser pulses of 320 to 400 nm laser wavelength, with selected parameters of the mechanical walls of the tubes constituting the catheter, of the laser fluence and of the force that is applied by the catheter on the tissues. Additionally, a novel method of calibrating such catheters is disclosed, which also enables real time monitoring of the ablation process. Additionally, novel methods of protecting the fibers exit facets are disclosed.
Abstract:
Aspects of stone identification methods and systems are described. According to one aspect, an exemplary method comprises: transmitting to a processing unit, with an imaging element mounted on a distal end of a scope, image data about a stone object inside a body cavity; generating from the image data, with the processing unit, a visual representation of the stone object and the body cavity; establishing from a user input, with the processing unit, a scale for the visual representation; determining from the visual representation, with the processing unit, a size of the stone object on the scale; comparing, with the processing unit, the size of the stone object with a predetermined maximum size to determine a removal status; and augmenting, with the processing unit, the visual representation to include an indicator responsive to the removal status. Associated systems are also described.
Abstract:
Aspects of stone identification methods and systems are described. According to one aspect, an exemplary method comprises: transmitting to a processing unit, with an imaging element mounted on a distal end of a scope, image data about a stone object inside a body cavity; generating from the image data, with the processing unit, a visual representation of the stone object and the body cavity; establishing from a user input, with the processing unit, a scale for the visual representation; determining from the visual representation, with the processing unit, a size of the stone object on the scale; comparing, with the processing unit, the size of the stone object with a predetermined maximum size to determine a removal status; and augmenting, with the processing unit, the visual representation to include an indicator responsive to the removal status. Associated systems are also described.
Abstract:
Disclosed is a tube comprising at least one lumen, and a wall comprising at least one or a plurality of wave-guide(s). The wall encloses the at least one lumen. The tube comprises a distal end configured for being introduced into a body of a mammal and a proximal end comprising a tube-connector. The wave-guide(s) are configured to conduct electro-magnetic radiation along the tube. The tube is configured to emit at least a part of the radiation into the lumen and/or to an outer surface of the tube. The wave-guide(s) are configured for transmitting and side-emitting UV-light comprising a wave-length of 200-280 nm, preferably 210-260 nm, and still more preferably 210-230 nm. The wall comprises fluorinated ethylene- propylene. Further disclosed is a system comprising the tube and a radiation source configured for emitting electro-magnetic radiation, preferably UV-C light. Also, a method for using the tube is disclosed. The method comprises applying the tube to a body of a patient.
Abstract:
A phototherapy assistance device includes: a connector that is connectable to a balloon detection unit that detects inflation information regarding whether a balloon has been inflated in a body cavity; and one or more processors including hardware, the one or more processors being configured to: detect connection information regarding whether an optical probe to be inserted into the balloon is connected to a light source device; determine whether the optical probe can be inserted on a basis of the inflation information received from the balloon detection unit via the connector, and the connection information; and report a determined determination result.
Abstract:
A treatment device and method for transmitting UVC light energy within a patient's body cavity, the device having a distal end having a generally cylindrical shaped housing configured for insertion into the body cavity, a UVC light coupled to the housing configured to shine light radially outward from the housing; and a power source couple to the UVC light.
Abstract:
A laser treatment head guides a laser beam to a target area within a body cavity and includes a laser output element having a deflection element. The laser output element with deflection element is rotatable relative to a guide element about an axis. First and second thread elements mutually engage to cause the deflection element to perform a combined axial and rotational movement relative to the guide element. A control unit and the laser treatment head are configured such that the target area is irradiated by individual pulses (p) in a helical pattern of irradiation spots over a section of the circumference of the body cavity. The control unit is further configured such that reference locations (X) on the target area are irradiated by an individual pulse number (N) of subsequent pulses (p), thereby heating the mucosa tissue within the target area to a predetermined temperature.
Abstract:
The present invention relates to a seating apparatus for the diagnosis and treatment, and more particularly, to a seating apparatus for diagnosis and treatment of diagnosing and curing urinary incontinence, erectile dysfunction and defecation disorders which enables to diagnose symptoms of urinary incontinence, erectile dysfunction and defecation disorders by measuring contraction pressure and contraction duration of pelvic floor muscles, muscles of perineum and anal sphincters of a user, who puts on cloth while seated, simultaneously with curing symptoms of urinary incontinence, erectile dysfunction and defecation disorders throughout biofeedback exercise and training.