Abstract:
An intelligent electronic device (IED) may be configured to detect arc flash events within a power system using stimulus measurements acquired by detection devices communicatively coupled to the power system. An arc flash event may be detected using a time-intensity comparison metric, such as an inverse time-over-stimulus metric, a cumulative stimulus metric, or the like. The stimulus may include electro-optical (EO) radiation produced in the vicinity of the power system, current measurements, or the like. The IED may detect an arc flash event if one or more of the stimulus types are indicative of an arc flash event. Responsive to detecting an arc flash event, the IED, or other protective element, may take one or more protective actions, such as issuing trip commands, or the like.
Abstract:
A solar energy absorption plate with an angle adjusting assembly comprises a solar energy plate; a first light sensing element and a second light sensing element at two symmetrical opposite sides; a control unit connected to each of the first light sensing element and second light sensing element; an angle adjusting unit connected to the control unit; and the angle adjusting unit being interactive with the solar energy plate. The control unit calculates a brightness difference between a brightness of the first light sensing element and a brightness of the second light sensing element so as to drive the angle adjusting unit to cause that the first and second light sensing element in the solar energy plate have the same brightness and the solar energy plate facing to sun. Furthermore a third and a fourth light sensing elements can be used further.
Abstract:
A backlight module having a plurality of light emitting blocks is provided. The backlight module includes a plurality of light emitting devices and a plurality of photo-sensors. The light emitting devices are disposed in the light emitting blocks. Herein, the light emitting devices disposed in the same lighting block can be turned on simultaneously. Further, the photo-sensors are disposed among the light emitting blocks. Herein, the photo-sensors are capable of detecting the luminous intensity of the neighboring light emitting blocks. The photo-sensors of the above-mentioned backlight module can accurately detect the luminous intensity of each light emitting block. A calibration method of the backlight module is also provided.
Abstract:
In a method of calibrating a light delivery device (10) having a solid state light source (12), for example comprising LEDs of an LED array, and an intensity control unit (16) comprising LED array driver and a dimmer module for generating a control signal for controlling at least the intensity of the light source, the light source is temporarily connected by a light guide (24; 24, 26) to a radiometer (38) for detecting irradiance of the delivered light. The light delivery device has a memory (30) for storing control signal parameters and associated radiance levels. The light delivery device is calibrated by adjusting the control signal parameters, e.g. a PWM duty cycle of a control signal to each of a series of predetermined settings, obtaining from the radiometer a corresponding series of delivered light irradiance levels measured thereby, storing the irradiance levels and associated control signal parameters in memory, and applying a best fit algorithm to the irradiance measurements and control signal parameters. Thereafter, a desired irradiate level can be set by selecting the best fit control signal parameters, such as duty cycle of a PWM control or other parameters. Output intensity levels may be measured at the same time as the irradiance levels and used to compensate for light source output level changes when setting a desired irradiance level.
Abstract:
An ultraviolet ray measuring method using an ultraviolet ray receiving element having a specific spectral sensitivity. The method includes: estimating an estimated value of an entire region from the spectral sensitivity of the ultraviolet ray receiving element and a solar spectral radiation spectrum; estimating an estimated value of a specific region from a specific action curve and the spectral sensitivity and the solar spectral radiation spectrum; and determining specific ultraviolet ray information by, on the basis of the estimated value of the entire region and the estimated value of the specific region, correcting an actually measured value which is measured by the ultraviolet ray receiving element. Further, specific ultraviolet information, which is obtained on the basis of sun altitude information, is also corrected.
Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
A method and apparatus for measuring bandwidth of light emitted from a laser is disclosed which may comprise: a first and second wavelength sensitive optical bandwidth detectors providing, respectively, an output representative of a first parameter indicative of the bandwidth of the emitted light as measured respectively by the first and second bandwidth detectors, and an actual bandwidth calculation apparatus adapted to utilize these two outputs as part of a multivariable linear equation employing predetermined calibration variables specific to either the first or the second bandwidth detector, to calculate a first actual bandwidth parameter or a second actual bandwidth parameter. The first actual bandwidth parameter may be a spectrum full width at some percent of the maximum (“FWXM”), and the second actual bandwidth parameter may be a portion containing some percentage of the energy (“EX”). The first and second bandwidth detectors may an etalon and the outputs may be representative of a fringe width of a fringe of an optical output of the respective etalon at FWXM. The precomputed calibration variables may be derived from respective three dimensional plots representing, respectively, detector outputs in relation to a calibrating input light with known values of the first and second actual bandwidth parameters, which may be FWXM and EX. The first/second three dimensional plot may provide a solution: (first/second output)=(a/d*(calibrating input light known value of FWXM))+(b/e*(calibrating input light known value of EX)+c/f; and the actual bandwidth calculation apparatus may use the derived equation: (first actual bandwidth parameter)=((b*(second output))−(e*(first output))+ce−bf)/(bd−ae), or the equation: (second actual bandwidth parameter)=((a*(second output))−(d*(first output))+cd−af)/(ae−bd). FWXM may be FWHM and EX may be E95. The transfer function of the first optical bandwidth detector may be selected to be much more sensitive to FWXM than to EX and the transfer function of the second optical bandwidth detector may be selected to be much more sensitive to EX than to FWXM.
Abstract:
A system and method for detecting radiation indicative of fire, such as forest fire. In one embodiment, a threshold energy level is determined based on ambient sensor conditions. A sensor unit may be setup to scan a predetermined area for electromagnetic radiation. Any detected electromagnetic radiation may then be band pass filtered to a wavelength range centered about a predetermined frequency associated with the presence of fire. The resulting energy level signal may then be further filter to pass only those signals which exhibit a “flicker” frequency. If the resulting filtered signal exceeds the threshold signal, a fire notification signal may then be generated.
Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
A photodetection device according to the present disclosure includes: a light-receiving section including a light-receiving element, a first switch, a second switch, and a signal generator, the first switch that couples the light-receiving element to a first node by being turned on, the second switch that applies a predetermined voltage to the first node by being turned on, and the signal generator that generates a pulse signal on the basis of a voltage at the first node; a controller that controls operations of the first switch and the second switch; a detector that detects a timing at which the pulse signal is changed, on the basis of the pulse signal; and an output section that outputs a detection signal corresponding to a detection result by the detector when the second switch is turned on.