Abstract:
A device for measuring mechanical quantity is provided which reduces the influence of a difference in thermal expansion coefficient between an object to be measured and a base plate metal body, and precisely measures a mechanical quantity such as deformation quantity or strain quantity caused in the object to be measured. The device includes a semiconductor strain sensor module for measuring deformation quantity of the object to be measured, and the module includes a metal body, and a semiconductor strain sensor mounted on the metal body to detect strain of the metal body. The object to be measured is made of a material having a thermal expansion coefficient larger than that of the metal body. Further, the metal body mounted with the semiconductor strain sensor has a structure configured to be fixed to the object to be measured.
Abstract:
Nonlinear spring. In one embodiment, the spring includes two opposed curved surfaces curving away from one another. A flexible cantilever member is disposed between the two opposed curved surfaces and a mass is attached to a free end of the cantilever member wherein the flexible cantilever member wraps around one of the curved surfaces as the cantilever member deflects to form a nonlinear spring. Energy harvesting devices and a load cell are also disclosed.
Abstract:
A load suspension and weighing system for a removable reservoir unit of a portable dialysis machine includes a centrally located flexure assembly. The flexure assembly includes magnets and a number of flexure rings which allow for movement of the magnets about a fixed circuit board. Sensors in the circuit board sense changes in the magnetic field as the magnets move in relation to the circuit board. The magnetic field changes produce a voltage output which is used by a processor to generate weight calculations. The top of the flexure assembly is attached to the interior of the dialysis machine. The entirety of the reservoir unit is suspended by a first internal frame that is attached to the bottom of the flexure assembly. Having a single flexure assembly positioned above the reservoir unit provides more accurate weight measurements while also preventing damage to the assembly from water spillage.
Abstract:
The invention relates to a spring (1), in particular for a push button, for fixing to a carrier (2) and for registering a vertical force (F). The spring (3) is designed in such a way that when actuated it converts a vertical movement into a horizontal movement that can be detected by sensor means (4).
Abstract:
A high-accuracy load measuring apparatus capable of enlarging a measurement range includes a loading section provided at one end of a long and narrow beam. A support supports the beam at a side closer to the other end of the beam than the loading section. A displacement sensor includes a capacitive sensor and is provided to measure a displacement of the loading section. The beam includes a pair of long and narrow plate-like legs arranged in parallel while being spaced apart in a thickness direction and a connecting portion connecting ends of the plate-like legs at a side of the loading section. The beam is supported on the support to have a changeable length between a supported position by the support and the loading section. Each plate-like leg includes a slot, which is a long and narrow hole formed along a length direction in a widthwise central part.
Abstract:
Described herein are ruggedized wafer level MEMS force dies composed of a platform and a silicon sensor. The silicon sensor employs multiple flexible sensing elements containing Piezoresistive strain gages and wire bonds.
Abstract:
A device, method, and system that allows the easy add on attachment of an applied-power sensor, assuring precise measurements over time, even in vibrating environments such as exercise environments. The device possesses structural qualities such that tightening the wrapping latch around a measured object/part presses a loaded spring between the object/part and the sensor, achieving and maintaining sufficient and constant contact, thus allowing continuously precise measuring. The device also includes a transmitter to transmit the measured data to an external data processing device and may include a processor to process the data before transmitting.
Abstract:
The present invention relates to a force-measuring transducer which measures forces applied to or generated by a surface of a resiliently deformable structure. Forces applied to or generated by a surface of a structure may be surface forces generated by molecules at the surface of the structure, mechanical forces/pressure generated by placing the structure between objects, forces generated by materials which constitute the structure and which have different coefficients of thermal expansion, attractive/repulsive forces among atoms, or forces generated on a treated surface by ultraviolet (infrared) rays or the like. The transducer is characterized in that it measures forces applied to or generated by the surface of the structure using electrical signals generated in accordance with variations in electromagnetic fields.
Abstract:
A high-accuracy load measuring apparatus capable of enlarging a measurement range includes a loading section provided at one end of a long and narrow beam. A support supports the beam at a side closer to the other end of the beam than the loading section. A displacement sensor includes a capacitive sensor and is provided to measure a displacement of the loading section. The beam includes a pair of long and narrow plate-like legs arranged in parallel while being spaced apart in a thickness direction and a connecting portion connecting ends of the plate-like legs at a side of the loading section. The beam is supported on the support to have a changeable length between a supported position by the support and the loading section. Each plate-like leg includes a slot, which is a long and narrow hole formed along a length direction in a widthwise central part.
Abstract:
The present invention provides three-dimensional force input control devices for use in sensing vector forces and converting them into electronic signals for processing in a electronic signal processing system with all components within die fabricated from the single semiconductor substrate. In some embodiments, the die has an elastic element, a frame formed around said elastic element, at least three mechanical stress sensitive IC components located in the elastic element, at rigid island element which transfers an external vector force to the elastic element and through the IC components provides electrical output signal, this rigid island has a height bigger than the thickness of the frame element, an external force-transferring element coupling the rigid island element with an external force and electronic circuit for processing output signals from the mechanical stress sensitive IC components.