Abstract:
The invention provides a method and related apparatus to link and/or pattern self-assembled first objects to a second object. Each of the first object (e.g., a nanoparticle) can be embedded in a mobile binder (i.e., a stabilizer). The invention applies energy to the first object and stabilizer, links this first object to the second object, and provides a controlled linkage of the first object with respect to the second object. Applying this procedure to many such objects results in a larger areal arrangement of these linked objects. An appropriate solvent may be used to remove non-linked objects, yielding a patterned array. Thermal annealing can be applied to control the physical and chemical properties of the array.
Abstract:
A mask stage speed |Vm|, a wafer stage speed |Vw|, and an absolute value |&Dgr;S| of a beam deflection value are determined (step 101). Then, it is judged whether a stripe number is even or odd (step 108) and deflective directions of a mask stage, a wafer stage, and a wafer deflector are set in accordance with the above judgment result (steps 109 and 110). Then, the wafer stage and mask stage respectively start continuous movement (step 113) and divided patterns are exposed (step 115-119). It is judged whether all divided patterns are exposed (step 120). When all divided patterns are not exposed, the next divided pattern is exposed by adding a deflection value on a wafer corresponding to a beam width on a mask (step 121).
Abstract:
Apparatus and a method for treating polymeric material, such as polytetrafluoroethylene, with radiation. The polytetrafluoroethylene is moved under an electron beam in an even and consistent depth on an adapted vibratory table. The vibratory table is sealably covered which allows a controlled environment. The polymeric material can be degraded to lower molecular weight forms or reacted with other materials.
Abstract:
In a method for observing or processing and analyzing the surface of a sample by irradiating a charged beam on the sample covered at least partially by an insulator film, an ultraviolet light is irradiated possibly as pulse on the sample (substrate), thereby transforming the insulator into a conductive material due to the photoconductivity effect, thereby transforming the surface of the sample (substrate) into a conductive material, so that charged particles are grounded from a grounded portion in order to prevent the charged beam from being repulsed due to charged particles of the irradiated charged beam accumulated in the insulator formed on the surface of the sample (substrate).
Abstract:
An improved ion implantation system is provided by the present invention. The system includes at least one power supply for providing voltage to at least one electrode and, a switching system operatively coupled between the at least one power supply and the at least one electrode. The switching system decouples the at least one power supply and the at least one electrode at a predetermined threshold to mitigate overload of the at least one power supply.
Abstract:
A multiple target array for receiving particles from a particle beam generator includes a particle beam transport path having a transport inlet and a transport outlet, the inlet receiving a particle beam from the particle beam generator. A kicker magnet is positioned along the particle beam transport path. The kicker magnet has an ON state and an OFF state and a kicker magnet inlet and a kicker magnet outlet. The array further includes a plurality of target paths, each of said target paths having a target inlet and terminating in a target. One of the target inlets is connected to the transport path adjacent to the kicker magnet outlet, and the particle beam in the transport path entering the kicker magnet inlet passes along the transport path through the kicker magnet outlet when the kicker magnet is in the OFF state, and the beam is directed to the target inlet when the kicker magnet is in the ON state.
Abstract:
Flexibility of a charged particle (e.g. electron) beam projection lithography tool is enhanced by filling a shaping aperture with the beam, projecting the image of the shaping aperture to a reticle subfield where the image preferably corresponds in size to a “clear” or “aperture” area in a subfield of the reticle and deflecting the beam across a selected portion thereof to develop a compound image which is projected onto the target (e.g. wafer). Deflection of the shaped beam onto the reticle aperture is preferably performed electrostatically with the center of deflection coincident with the source cross-over of the charged particle beam column to avoid motion of the beam at the contrast aperture which is used, possibly together with a beam tube, to collect particles scattered where the deflected beam overlaps the patterned areas of the reticle adjacent the reticle aperture. Fabrication of new reticles is thus avoided for minor design changes by provision of direct writing for the design changes while preserving a large portion of the benefits of high throughput of charged particle beam projection of reticle patterns to the target.
Abstract:
The invention pertains to electron exposure equipment useful for exposing, treating and processing coatings and other materials by a cold cathode gas discharge electron source having a broad uniform emitting area. The apparatus has a vacuum chamber; a large surface area cathode in the vacuum chamber and means for applying a negative voltage to the cathode and causing the cathode to issue electrons toward a target in the vacuum chamber. An anode is positioned between the cathode and the target. The anode is formed of an electrically conductive grid having an array of apertures therethrough extending from a center of the grid to an edge of the grid. In one embodiment the apertures have a progressively increasing area from the center of the grid to the edge of the grid. In another embodiment the anode has a progressively decreasing thickness from the center of the grid to the edge of the grid. In yet another embodiment the anode has both progressively increasing area from the center of the grid to the edge of the grid and a progressively decreasing thickness from the center of the grid to the edge of the grid. A voltage is applied to the anode which is positive relative to the voltage applied to the cathode.
Abstract:
Disclosed is a multicolumn charged-particle beam lithography system having the circuitry of a settlement wait time control unit thereof simplified. The settlement wait time control unit controls a settlement wait time to be spent by each of amplifiers connected to main deflectors necessary to realize concurrent exposure among columns. The charged-particle beam lithography system has a plurality of columns for patterning an exposed sample by deflecting and sweeping a charged-particle beam on the exposed sample according to expose pattern data. The charged-particle beam lithography system includes a settlement wait time control unit for controlling a settlement wait time to be spent by each of the amplifiers connected to the deflectors necessary to realize concurrent exposure among the columns. The settlement wait time control unit includes a circuit for comparing magnitudes of changes in deflection data items output from deflector adjusting circuits in the columns with one another and selecting a maximum value. The settlement wait time control unit further includes a circuit for determining a settlement wait time for all the columns according o the magnitude of a change of the selected maximum value.
Abstract:
An apparatus and method for detecting an alignment mark on a substrate using electron beams. The method include the steps of setting an accelerating voltage of the electron beams in accordance with the layer structure of the substrate, irradiating the substrate with the electron beams having the accelerating voltage set in the setting step, and detecting one of radiation and electrons from the substrate after the irradiating step is performed, and determining the position of the alignment mark based on the detecting operation. The apparatus includes a device for setting such an accelerating voltage, a device for irradiating the substrate with the electron beams, and a detector for detecting one of the radiation and the electrons. Fluorescent X-rays, secondary electrons or backscattered electrons are detected.