Abstract:
A load timing circuit including an output simulation circuit similar to the output circuits of the memory, so as to present the same propagation delay; a simulating signal source for generating a data simulating signal; a synchronizing network for detecting a predetermined switching edge of the data simulating signal and enabling supply of the signal to the output simulation circuit and data supply to the output circuits of the memory; a combinatorial network for detecting propagation of the data simulating signal to the output of the output simulation circuit and disabling the data simulating signal; and a reset element for resetting the timing circuit.
Abstract:
In an anti-ESD protective structure, especially designed for pins destined to reach below ground and/or above supply voltages, includes a pair of Zener diodes or lateral NPN structures with a resistive connection between base and emitter, connected in opposition among each other between the pin to be protected and a grounded substrate of the integrated circuit. An amplifying effect on the leakage current which is drawn/injected through the pin by the protective structure caused by the triggering of an intrinsic parasitic transistor is effectively eliminated by connecting a biasing element, such as a forward biased junction, between the node of interconnection between the two Zener orlateral NPN structures and a node of the integrated circuit biased with a voltage sufficiently high as to ensure, under any condition, a reverse biasing of the base-emitter junction of the parasitic transistor.
Abstract:
A circuit is provided in telecommunication terminal equipment for splitting a limited supply of current received from a subscriber's line current among a plurality of functional circuits according to their priority rank. The circuit uses a differential pair of current delivering transistors and a special circuit to monitor the actual current of absorption of at least the functional circuit of highest rank to produce a control signal that is used for modifying the drive conditions of the current delivering transistors. All current exceeding the actual absorption needs of the highest rank functional circuit is distributed to the other functional circuits and the prior art practice of sinking unneeded current through a dissipative shunt voltage regulator associated with each functional circuit is avoided. This same principle may be advantageously applied also to functional circuits of progressively lesser rank of priority.
Abstract:
A memory line decoding driver is so biased that the P channel pull-up transistor biasing the final inverter conducts a high current during the line address transient phase, for rapidly charging the input of the final inverter, and is turned on weakly during the static phase between one address phase and another, for reducing current consumption. For which purpose, a voltage modulating stage alternatively connects the gate terminal of the pull-up transistor to a capacitor, with which the charge is distributed, and to the supply.
Abstract:
To protect the thin tunnel oxide layer interposed between the floating gate region of memory cells and the substrate and which are subject to in-process damage, when the wafer is subjected to radiation, provision is made for a diode, connected between the control gate region of the cells and the substrate. The diode defines a conductive path that, when normal operating voltage is applied to the control gate regions, is turned off and has no effect on normal operation of the memory, and which is turned on to permit the passage of charges between the control gate region and the substrate, when the control gate potential exceeds normal operating potential but is less than the breakdown voltage of the tunnel oxide divided by the coupling factor of the control and floating gate regions of the cells. The diode is appropriately formed prior to patterning the control gate regions of the cells.
Abstract:
A transconductor stage for high-frequency filters operated on a low voltage supply, being of a type which comprises an input circuit portion having signal inputs, further comprises a pair of interconnected differential cells (2,3) being associated each with a corresponding signal input. Each cell incorporates at least one pair of bipolar transistors (Q1,Q2;Q3,Q4) having at least one corresponding terminal thereof (e.g. the emitter terminal) connected in common.
Abstract:
An integrated circuit for checking the utilization rate of redundancy memory elements in semiconductor memory device, comprising a matrix of memory elements and a redundancy circuitry which comprises a plurality of programmable non-volatile memory registers, each supplied with address signals to generate a redundancy selection signal for the selection of an associated redundancy memory element when the address signals coincide with the address stored therein, and combinatorial circuit means supplying the non-volatile memory registers with an inhibition signal for inhibiting the generation of the respective redundancy selection signals when the address signals coincide with the address stored in a non-programmed non-volatile memory register; the integrated circuitry comprises multiplexing circuit means, controlled by a control signal generated by a control circuitry of the memory device, for transmitting the redundancy selection signals to output pads of the memory device when the control signal is activated; the control signal is also supplied to said combinatorial circuit means to prevent when activated the generation of said inhibition signal.
Abstract:
The present programming method exploits the close dependence of tunneling current on the voltage drop across the tunnel oxide layer. A bootstrapped capacitor connected to the drain terminal of the transistor is employed. The charge state of the capacitor determines the bias of the tunnel oxide and is in turn determined by the charge state in the floating gate. Biasing by the bootstrapped capacitor is such as to permit passage of the tunneling current and, hence, a change in the threshold voltage of the transistor until the floating gate reaches the desired charge level, and to prevent passage of the tunneling current upon the transistor reaching the desired threshold. Programming is thus performed automatically and to a predetermined degree of accuracy, with no need for a special circuit for arresting the programming operation when the desired threshold is reached.
Abstract:
There is described a semiconductor memory including a matrix of rows and columns of memory cells, wherein the columns are grouped together in sectors, each sector representing the portion of the matrix itself related to a data input/output line. Each sector is in turn divided into packets of columns, and there are redundancy columns suitable for replacing a matrix column containing defective memory cells. Each of the redundancy columns is included in a respective packet. The memory also includes control circuits to execute the abovementioned replacement.
Abstract:
A process for checking, reading or writing memories of a programmed computer. The process selects a pre-selected logic space in a memory to be checked. The process triggers the addressing micro-instructions of a suitable micro-program related to a pre-selected checking procedure, so as to cause its execution by means of a pre-established number of clock strokes. The micro-instructions of the micro-program are executed according to an incremental sequence and repeated in a loop.