Abstract:
A method of manufacturing a semiconductor structure includes forming a raised source-drain region in a semiconductor substrate adjacent to a dummy gate and forming a chemical mechanical polish (CMP) stop layer over the gate structure and above a top surface of the semiconductor substrate. A first ILD layer is formed above the CMP stop layer. The first ILD layer is removed to a portion of the CMP stop layer located above the gate structure and a portion of the CMP stop layer located above the gate structure is also removed to expose the dummy gate. The dummy gate is replaced with a metal gate and the metal gate is polished until the CMP stop layer located above the raised source-drain region is reached.
Abstract:
Embodiment of the present invention provides a method of forming a semiconductor device. The method includes providing a semiconductor substrate; epitaxially growing a silicon-carbon layer on top of the semiconductor substrate; amorphizing the silicon-carbon layer; covering the amorphized silicon-carbon layer with a stress liner; and subjecting the amorphized silicon-carbon layer to a solid phase epitaxy (SPE) process to form a highly substitutional silicon-carbon film. In one embodiment, the highly substitutional silicon-carbon film is formed to be embedded stressors in the source/drain regions of an nFET transistor, and provides tensile stress to a channel region of the nFET transistor for performance enhancement.
Abstract:
It is recognized that, because of its unique properties, graphene can serve as an interface with biological cells that communicate by an electrical impulse, or action potential. Responding to a sensed signal can be accomplished by coupling a graphene sensor to a low power digital electronic switch that is activatable by the sensed low power electrical signals. It is further recognized that low power devices such as tunneling diodes and TFETs are suitable for use in such biological applications in conjunction with graphene sensors. While tunneling diodes can be used in diagnostic applications, TFETs, which are three-terminal devices, further permit controlling the voltage on one cell according to signals received by other cells. Thus, by the use of a biological sensor system that includes graphene nanowire sensors coupled to a TFET, charge can be redistributed among different biological cells, potentially with therapeutic effects.
Abstract:
Embodiments of the present disclosure are directed to MOCA networks including power-saving MOCA-capable devices. Each of the MOCA-capable devices is operable during a normal or active mode to perform the specific multimedia functionality for which the device is designed, such as to function as a digital video recorder (DVR) and content server, set-top box, and so on. Moreover, each of the MOCA-capable devices is also operable to automatically enter a low-power or standby mode, which reduces the power consumption of the device, when the device need not operate in the active mode. In this way, power savings in each of the MOCA devices results in overall power savings in the MOCA network. A global user-configurable low-power or standby mode parameter can be utilized to override the automatic standby mode operation if desired.
Abstract:
A method of making inkjet print heads may include forming a first wafer including a sacrificial substrate layer, and a first dielectric layer thereon having first openings therein defining inkjet orifices. The method may also include forming a second wafer having inkjet chambers defined thereon, and joining the first and second wafers together so that each inkjet orifice is aligned with a respective inkjet chamber. The method may further include removing the sacrificial substrate layer thereby defining the inkjet print heads.
Abstract:
A method of making an inkjet print head may include forming, by sawing with a rotary saw blade, continuous slotted recesses in a first surface of a wafer. The continuous slotted recesses may be arranged in parallel, spaced apart relation, and each continuous slotted recess may extend continuously across the first surface. The method may further include forming discontinuous slotted recesses in a second surface of the wafer to be aligned and coupled in communication with the continuous slotted recesses to define alternating through-wafer channels and slotted recess portions. The method may further include selectively filling the residual slotted recess portions to define through-wafer ink channels.
Abstract:
An ink jet printhead device includes a substrate and at least one first dielectric layer above the substrate. A resistive layer is above the at least one first dielectric layer. An electrode layer is above the resistive layer and defines first and second electrodes coupled to the resistive layer. At least one second dielectric layer is above the electrode layer and contacts the resistive layer through the at least one opening. The at least one second dielectric layer has a compressive stress magnitude of at least 340 MPa.
Abstract:
Methods and devices for enhancing mobility of charge carriers. An integrated circuit may include semiconductor devices of two types. The first type of device may include a metallic gate and a channel strained in a first manner. The second type of device may include a metallic gate and a channel strained in a second manner. The gates may include, collectively, three or fewer metallic materials. The gates may share a same metallic material. A method of forming the semiconductor devices on an integrated circuit may include depositing first and second metallic layers in first and second regions of the integrated circuit corresponding to the first and second gates, respectively.
Abstract:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
Abstract:
Methods and systems are described for enabling display system data transmission during use. An integrated circuit package includes input interface circuitry configured to receive an audio-video data stream having a video signal and timing information and timing extraction circuitry that can identify blanking patterns for the video signal. The package includes input processing circuitry for receiving audio-video signal and converting the audio-video data stream input into a low voltage differential signal (LVDS). The package includes a timing controller having timing extraction circuitry, a set of symbol buffers, a scheduler, and timing control circuitry. All configured to implement LVDS data transfer and in some implementation enable point to point data transfer from data buffers to associated column drivers.