Abstract:
An anti-fuse transistor includes a source, a drain and a well connected together, and a gate. A method for programming the anti-fuse transistor includes applying a reference potential to the gate, and applying a high potential greater than the reference potential to the drain of the anti-fuse transistor. A first access transistor is connected to the anti-fuse transistor. The first access transistor includes a drain connected to the source of the anti-fuse transistor, and a source for receiving the high potential. Applying the high potential to the drain of the anti-fuse transistor includes turning on the first access transistor.
Abstract:
A power on reset circuit (POR) includes a first reset circuit for delivering a first reset signal when a supply voltage of the POR circuit is between a first low threshold and a first high threshold, and a second reset circuit for delivering a second reset signal when the supply voltage is between a second low threshold and a second high threshold. The second high threshold is less than the first high threshold. The POR circuit further includes at least one electrically erasable and programmable non-volatile memory cell. A delivery circuit outputs the first reset signal or the second reset based upon on whether the at least one electrically erasable and programmable non-volatile memory cell is in an erased or programmed state. The POR circuit has a threshold for outputting the first or second reset signal that is programmable according to the intended application.
Abstract:
The data storage device includes several registers that can be addressed by address words, and connected to p output ports through connections that can be configured in response to address words of p registers selected to read the contents of these registers on the p ports respectively. All register address words contain a specific bit with a predetermined rank identical for all address words and remaining bits. The registers are connected in pairs on each output port, each pair of registers containing two registers with address words that only differ in the value of the said specific bit. The connections include a pair of first switches that can be controlled in a complementary manner by the specific bit in the address word of one of the two registers, and a second switch connected to the output port considered and that can be controlled from the remaining bits of the address words of the two registers, for each pair of registers and for each output port, the first two switches are connected firstly between the corresponding two registers, and secondly between the corresponding second switch.
Abstract:
A comparator compares a first voltage applied to a first input to a second voltage applied to a second input. The comparator delivers an output signal having a first value when the second voltage is higher than the first voltage, and having a second value when the second voltage is lower than the first voltage. The comparator includes first and second PMOS transistors arranged as current mirrors. The first PMOS transistor has its source connected to the first input of the comparator for receiving the first voltage. The second PMOS transistor has its source connected to the second input of the comparator for receiving the second voltage. The output of the comparator is connected to the drain of one of the transistors.
Abstract:
Operation of a logic circuit for performing a desired logic function is scrambled. Logic gates and/or transistors are provided in the logic circuit so that the logic function is performed in at least two different ways. The way in which the logic function is performed is determined by the value of a function selection signal applied to the logic circuit. The function selection signal is random and is applied to the logic circuit, and the function selection signal is refreshed at determined instants for scrambling operation of the logic circuit. For identical data applied at the input of the logic circuit and for different values of the function selection signal, the polarities of certain internal nodes of the logic circuit and/or the current consumption of the logic circuit are not identical.
Abstract:
A system-on-chip (SoC) architecture includes a plurality of blocks, each including a power control module to selectively control the power dissipated by the bloc. For each block, a power register is provided to receive power control instructions to selectively control the respective power control module. The system also includes a power control unit for writing respective power control instructions into the power control registers of the blocks, whereby the power dissipated is controlled individually and independently for each block under the centralized control of the power control unit. For each block, a power status register is also provided to receive status information concerning power control within the respective block. The power control unit reads the status instructions from such power status registers.
Abstract:
A start-detection circuit and a stop-detection circuit detect the start condition and the stop condition in a data signal associated with a clock signal according to the IIC protocol. The start-detection circuit comprises: a first detector to produce a first reset signal when a trailing edge of the data signal is detected; a counter to count pulses of a reference signal when the first reset signal is received, and to produce an enabling signal when the number of pulses counted has reached a predefined number; a second detector to store the enabling signal when a trailing edge of the clock signal is detected. The stop-detection circuit comprises a third detector to produce a stop signal when a leading edge of the data signal is detected after the detection of a leading edge of the clock signal.
Abstract:
A current or voltage generator is integrated onto a silicon wafer and may include a first element including a first NMOS transistor having its source connected to ground through an electrical resistance, a second element including a second NMOS transistor having its source connected to ground, and a bias circuit for the first and second elements. The second element may include a voltage divider. The gate of the second NMOS transistor may be connected to a dividing node of the voltage divider, and the anode of the voltage divider may be connected to the gate of the first NMOS transistor. Both elements may be biased at an operating point corresponding to an identical temperature stability point for both elements.
Abstract:
The present description concerns a switch based on a phase-change material comprising: first, second, and third electrodes; a first region of said phase-change material coupling the first and second electrodes; and —a second region of said phase-change material coupling the second and third electrodes.
Abstract:
System, method, and circuitry for generating a linker model for use by a toolchain associated with a programmable computing device. One or more regions in the memory resources available to the programmable computing devices is defined for used by an application executing on the programmable computing device. One or more sections is defined for those regions for use by the application. Resource boundaries are generated for the application based on the defined regions and the defined sections. A user is enabled to modify the defined regions or the defined sections or the generated resource boundaries. A linker model is then generated based on the available memory resources, the defined regions, the defined sections, and the generated resource boundaries. This linker model is then utilized to generate a linker script for the programmable computing device based the linker syntax compatible with a toolchain linker for the programmable computing device.