Abstract:
This invention relates to methods and devices for bias estimation and correction, particularly for time-of-arrival (TOA) based wireless geolocation systems. Multipath and non-line-of-sight (NLOS) biases can cause distance estimation errors in the range of tens-hundreds of meters and is particularly problematic in urban and indoor environments. The behavior of the biases dynamically changes depending on the clutter and/or obstructions between the base station and the mobile device. Aspects of the present invention provide practical real-time bias estimation and correction techniques for TOA-based systems and are based on inferring and estimating the biases from dynamic time differential measurements. The techniques can operate in real-time and involve simple calculations.
Abstract:
This invention relates to methods and systems for limiting consumption, particularly power consumption, more particularly by appliances in a building, and is generally suitable for integration with building management systems. Embodiments of the invention provide arrangements in which the aggregated power load of a plurality of appliances is capped to a selected value (which may be arbitrary, or may be dictated by conditions) while seeking to minimize the deviation from target environmental conditions within the building through a combination of distributed decision making by the appliances themselves and centralized orchestration, which may be informed by real-time sensor readings and/or known properties of the building. The distributed decision-making by individual devices may be based on projected deviation from the target conditions after a period of activity or inactivity but with a central controller which determines which devices should be switched on.
Abstract:
This invention relates to the use of frequency synchronization accuracy as an additional quality metric for mobile call handover between base stations. Call handover is of major importance within any mobile network; without checking frequency synchronization before handover dropped calls and interrupted communication can result.
Abstract:
An access network comprises a plurality of access nodes (DSLAMs), a plurality of network access servers (CP BRASs) and an ANCP relay. The access network control relay component relays data between an access node and a plurality of network access servers and includes one or more interfaces and associated functionality in an ANCP listener component for enabling a connection between the relay component and the access node, for transmitting data and/or messages thereover, and an interface (ANCP Agents) for a connection to be made with each of the plurality of network access servers (via ANCP listeners contained within the BRASs) for transmitting ANCP messages thereover; and a mapping database for storing mapping data to determine to which network access server a message should be transmitted from the relay component, together with a CP authentication database and a workflow processing component for controlling operation of components within the ANCP relay.
Abstract:
This invention relates to methods and devices for frequency distribution based on, for example, the IEEE 1588 Precision Time Protocol (PTP). Packet delay variation (PDV) is a direct contributor to the noise in the recovered clock and various techniques have been proposed to mitigate its effects. Embodiments of the invention provide a mechanism to directly measure and remove PDV effects in the clock recovery mechanism at a slave clock. One particular embodiment provides a clock recovery mechanism including a phase-locked loop (PLL) with a PDV compensation feature built-in. An aim of the invention is to enable a slave clock to recover the master clock to a higher quality as if the communication path between master and slave is free of PDV. This technique may allow a packet network to provide clock synchronization services to the same level as time division multiplexing (TDM) networks and Global Positioning System (GPS).
Abstract:
This invention relates to methods and devices for synchronization using linear programming, especially over packet networks using, for example, the IEEE 1588 Precision Time Protocol (PTP). Timing protocol messages are exposed to artifacts in the network such as packet delay variations (PDV) or packet losses. Embodiments of the invention provide a two-dimensional linear programming technique for estimating clock offset and skew, particularly from two-way exchange of timing messages between a master and a slave device. Some embodiments include a skew and offset adjustable free-running counter for regenerating the master time and frequency at the slave device.
Abstract:
This invention relates to methods and devices for time and frequency synchronization, especially over packet networks using, for example, the IEEE 1588 Precision Time Protocol (PTP). Timing protocol messages are exposed to artifacts in the network such as packet delay variations (PDV) or packet losses. Embodiments of the invention provide a digital phase locked loop (DPLL) based on direct digital synthesis to provide both time and frequency signals for use at the slave (time client). An example of this DPLL in conjunction with a recursive least squares mechanism for clock offset and skew estimation is also provided.
Abstract:
This invention relates to methods and devices for time and frequency synchronization. The invention has particular application where time and frequency synchronization over packet networks using, for example, the IEEE 1588 Precision Time Protocol (PTP) is being carried out. The primary challenge in clock distribution over packet networks is the variable transit delays experienced by timing packets, packet delay variations (PDVs). Embodiments of the invention provide a method for time offset alignment with PDV compensation where a synchronized frequency signal is available at a slave device via Synchronous Ethernet and is used to determine the compensation parameters for the PDV.