Abstract:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
Abstract translation:这里公开的是(1)使用其中n型氮化镓化合物半导体(Al x Ga 1-x N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
Abstract:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlXGa1-xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1-XN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1-xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1-xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
Abstract translation:本文公开了(1)一种使用其中n型氮化镓化合物半导体(Al x Ga 1-X N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘的氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
Abstract:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
Abstract translation:这里公开的是(1)使用其中n型氮化镓化合物半导体(Al x Ga 1-x N)的n层是双层结构的氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,包括 低载流子浓度的n层和高载流子浓度的n +层,前者与绝缘的氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,其包括含有较低浓度的p型杂质的低杂质浓度的iL层和iH层 含有较高浓度的p型杂质的高杂质浓度,前者与n层相邻; (3)具有上述特征的发光半导体器件和(4)由有机金属化合物具有受控导电性的n型氮化镓系化合物半导体(Al x Ga 1-x N)的层的制造方法, 通过以受控的混合比将含硅气体和其它原料气体一起供给到气相外延。
Abstract:
A semiconductor device having an n-type layer of gallium nitride that is doped with silicon and has a resistively ranging from 3×10−1 &OHgr;cm to 8×10−3 &OHgr;cm or a carrier concentration ranging from 6×1016/cm3 to 3×1018/cm3.
Abstract translation:一种半导体器件,其具有掺杂硅的n型氮化镓层,其电阻范围为3×10 -1Ω〜8×10 -3Ω/ cm或载流子浓度为6×10 16 / cm 3〜3×10 18 / cm 3。
Abstract:
Disclosed is a light-emitting semiconductor device which comprises an N-layer of N-type nitrogen-Group III compound semiconductor satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0 and x=y=0, a P-layer of P-type nitrogen-Group III compound semiconductor satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0 and x=y=0 and a Zn doped semi-insulating I-layer of nitrogen-Group III compound semiconductor satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0 and x=y=0. The semi-insulating I-layer has a 20 to 3000 .ANG. thickness and can emit light in the range of 485 to 490 nm. By employing the I-layer, the light-emitting diode as a whole can emit light in the range of 450 to 480 nm.
Abstract translation:公开了一种发光半导体器件,其包括满足式Al x Ga y In 1-x-y N的N型N型氮 - III族化合物半导体的N层,包括x = 0,y = 0和x = y = 0,a 满足公式Al x Ga y In 1-x-y N的P型氮 - III族化合物半导体的P层,包括x = 0,y = 0和x = y = 0,以及Zn掺杂的半绝缘I层, 满足公式Al x Ga y In 1-x-y N的III族化合物半导体,包括x = 0,y = 0和x = y = 0。 半绝缘I层的厚度为20至3000,可以发射485至490nm的光。 通过采用I层,发光二极管整体可发射450〜480nm的光。
Abstract:
A light-emitting semiconductor device using a gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N) having an i.sub.L -layer of insulating gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) containing a low concentration of p-type impurities. An i.sub.H -layer of insulating gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) containing a high concentration of p-type impurities is adjacent to the i.sub.L -layer. An n-layer of n-type gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) of low carrier concentration is adjacent to the i.sub.L -layer. An n.sup.+ -layer of n-type gallium nitride compound semiconductor (Al.sub.x Ga.sub.1-x N, inclusive of x=0) of high carrier concentration doped with n-type impurities is adjacent to the n-layer.
Abstract translation:使用具有含有低浓度p型杂质的绝缘氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的iL层的氮化镓系化合物半导体(Al x Ga 1-x N)的发光半导体装置。 含有高浓度p型杂质的绝缘氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的iH层与iL层相邻。 低载流子浓度的n型氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的n层与iL层相邻。 n型氮化镓化合物半导体(Al x Ga 1-x N,包括x = 0)的n +层与n型杂质掺杂的高载流子浓度相邻。
Abstract:
A method of manufacturing two sapphireless layers (3a, 3b) at one time made of Group III nitride compound semiconductor satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0, and x=y=0, and a LED (10) utilizing one of the semiconductor layers (3a, 3b) as a substrate (3) includes the steps of forming two zinc oxide (ZnO) intermediate layers (2a, 2b) on each side of a sapphire substrate (1), forming two Group III nitride compound semiconductor layers (3a, 3b) satisfying the formula Al.sub.x Ga.sub.y In.sub.1-x-y N, inclusive of x=0, y=0, and x=y=0, each laminated on each of the intermediate ZnO layers (2a, 2b), and separating the intermediate ZnO layers (2a, 2b) from the sapphire substrate (1) by etching with an etching liquid only for the ZnO layers (2a, 2b). At least one of the so-obtained Group III nitride compound layers is provided with n and p MOVPE layers (4, 5) formed thereon with electrodes (6, 7) on opposite sides to form an LED emitting in the 450 nm region and having a low device resistance.
Abstract translation:一次由满足公式Al x Ga y In 1-x-y N的III族氮化物化合物半导体制造两个蓝宝石层(3a,3b)的方法,包括x = 0,y = 0和x = y = 0,以及 利用半导体层(3a,3b)之一作为基板(3)的LED(10)包括在蓝宝石基板(1)的每一侧上形成两个氧化锌(ZnO)中间层(2a,2b)的步骤, 形成满足式Al x Ga y In 1-x-y N的两个III族氮化物化合物半导体层(3a,3b),包括x = 0,y = 0和x = y = 0,各层叠在每个中间ZnO层 ,2b),并且通过仅用于ZnO层(2a,2b)的蚀刻液蚀刻从中分离出中间ZnO层(2a,2b)和蓝宝石衬底(1)。 如此获得的III族氮化物化合物层中的至少一个设置有在其上形成有电极(6,7)的相对侧上的n和p个MOVPE层(4,5),以形成在450nm区域中发射的LED,并且具有 器件电阻低。
Abstract:
A gallium nitride group compound semiconductor laser diode (10) satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1 and 0.ltoreq.y.ltoreq.1 comprises by a double hetero-junction structure sandwiching an active layer (5) between layers (4, 6) having wider band gaps than the active layer (5). The active layer (5) may comprise magnesium (Mg) doped p-type conductive gallium nitride group compound semiconductor satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1 and 0.ltoreq.y.ltoreq.1 . In another embodiment, the active layer (5) is doped with silicon (Si).
Abstract translation:满足式(Al x Ga 1-x)y In 1-y N,包括0≤x≤1且0≤y≤1的氮化镓族化合物半导体激光二极管(10) 在具有比活性层(5)更宽的带隙的层(4,6)之间夹着有源层(5)的结结构结构。 有源层(5)可以包括满足式(Al x Ga 1-x)y In 1-y N的包含镁(Mg)的p型导电氮化镓族化合物半导体,包括0≤x≤1和0≤ y = 1。 在另一实施例中,有源层(5)掺杂有硅(Si)。
Abstract:
A compound semiconductor vapor phase epitaxial device comprises a cylindrical reactor vessel, a plurality of flow channels disposed in the reactor vessel, a crystal substrate disposed in one of the flow channels, a plurality of gas supply pipes for respectively supplying gas containing element of compound to be grown on the crystal substrate and at least one slit or linearly arranged fine holes communicating adjacent two flow channels so as to extend in a direction normal to a direction of the gas flow to form a laminate layer flow consisting of two or more than two gases at an upstream portion of location of the crystal substrate.
Abstract:
A gallium nitride group compound semiconductor laser diode includes at least one pn junction layer disposed between an n-type layer and a p-type layer. The n-type layer is formed from a gallium nitride group compound semiconductor material defined by the composition equation (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N (where 0.ltoreq.x.ltoreq.1 and 0.ltoreq.y.ltoreq.1). The p-type layer, doped with an acceptor impurity, is obtained by electron beam irradiating a gallium nitride group compound semiconductor material defined by the composition equation (Al.sub.x' Ga.sub.1-x').sub.y' In.sub.1-y' N (where 0.ltoreq.x'.ltoreq.1, 0.ltoreq.y'.ltoreq.1, x=x' or x.noteq.x', and, y=y' or y.noteq.y'). The improved gallium nitride group semiconductor laser diode of the present invention is found to emit light in the visible short wavelength spectrum of light which includes the blue, violet and ultraviolet regions.
Abstract translation:氮化镓族化合物半导体激光二极管包括设置在n型层和p型层之间的至少一个pn结层。 n型层由由组成式(Al x Ga 1-x)y In 1-y N(其中0≤x≤1和0≤y≤1)限定的氮化镓族化合物半导体材料形成, 。 掺杂有受主杂质的p型层通过电子束照射由组成式(Al x Ga 1-x')y'In 1-y'N(其中0 i> 1)定义的氮化镓族化合物半导体材料而获得, = x' = 1,0 = 1,x = x'或x NOTEQUAL x',y = y'或y NOTEQUAL y')。 发现本发明的改进的氮化镓族半导体激光二极管在包括蓝色,紫色和紫外区域的光的可见短波长光谱中发光。