Abstract:
The invention concerns a plasma reactor employing a chamber enclosure including a process gas inlet and defining a plasma processing region. A workpiece support pedestal capable of supporting a workpiece at processing location faces the plasma processing region, the pedestal and enclosure being spaced from one another to define a pumping annulus therebetween having facing walls in order to permit the process of gas to be evacuated therethrough from the process region. A pair of opposing plasma confinement magnetic poles within one of the facing walls of the annulus, the opposing magnetic poles being axially displaced from one another. The magnetic poles are axially displaced below the processing location by a distance which exceeds a substantial fraction of a spacing between the facing walls of the annulus.
Abstract:
A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
Abstract:
A plasma reactor includes a chamber adapted to support an evacuated plasma environment, a passageway connecting the chamber to a region external of the chamber, the passageway being defined by spaced opposing passageway walls establishing a passageway distance therebetweeen, and a plasma-confining magnet assembly adjacent the passageway. The plasma-confining magnet assembly includes a short magnet adjacent one of the passageway walls and having opposing poles spaced from one another by a distance which a fraction of the gap distance, the short magnet having a magnetic orientation along one direction transverse to the direction of the passageway, and a long magnet adjacent the other one of the opposing passageway walls and generally facing the short magnet across the passageway and having opposing poles spaced from one another along a direction transverse to the passageway by a pole displacement distance which is at least nearly as great as the gap distance, the long magnet having a magnetic orientation generally opposite to that of the short magnet.
Abstract:
A method of adjusting the cathode DC bias in a plasma chamber for fabricating semiconductor devices. A dielectric shield is positioned between the plasma and a selected portion of the electrically grounded components of the chamber, such as the electrically grounded chamber wall. The cathode DC bias is adjusted by controlling one or more of the following parameters: (1) the surface area of the chamber wall or other grounded components which is blocked by the dielectric shield; (2) the thickness of the dielectric; (3) the gap between the shield and the chamber wall; and (4) the dielectric constant of the dielectric material. In an apparatus aspect, the invention is a plasma chamber for fabricating semiconductor devices having an exhaust baffle with a number of sinuous passages. Each passage is sufficiently long and sinuous that no portion of the plasma within the chamber can extend beyond the outlet of the passage. By blocking the plasma from reaching the exhaust pump, the exhaust baffle reduces the deposition of unwanted particles on exhaust pump components. The exhaust baffle also reduces the cathode DC bias by reducing the effective surface area of the electrically grounded chamber wall which couples RF power to the plasma.