Abstract:
A display device is constituted by a display module which determines a plurality of pieces of pixels as belonging to one block unit, selects the plurality of pixels in each block unit at the same time and displays a picture image by adding one or a plurality of specific patterns each having different spatial frequencies of each block unit; a display control unit which controls the display module; a picture image signal generation unit which generates picture image signals; and a computing circuit which generates the specific patterns each having different spatial frequencies while weighting the same based on the picture image signals for every block unit. Thereby, a display device which reduces the signal clock frequency as well as increases the signal writing time, enhances the opening rate of an LC panel and permits a highly fine display and a high speed motion picture display, is obtained.
Abstract:
An image processing apparatus obtains a sum A of image data values of pixels in a template image, a sum B of squares of image data values of pixels in a template image, a sum C of image data values of pixels in a sub-image to be processed, of a search image, a sum D of squares of image data values of pixels in the sub-image of the template image, further obtains a threshold value F in advance by using the obtained values A, B, C and D, the number P of pixels in the template image, and the preset value E. Moreover, the apparatus obtains a square of each difference between an image data value of each pixel in the sub-image and that of a corresponding pixel in the template image, and performs cumulative addition for each obtained squares. If the result of cumulative addition exceeds the above-mentioned threshold value, the apparatus closes processing evaluation of a similarity between the sub-image and the template image. Furthermore, the apparatus recursively obtains a moving-average value of image data values of pixels in a rectangular region to be presently processed, by using a moving-average value for a rectangular region which was previously processed and image data read from a first memory and a second memory, each memory stores image data by one line pixels of the image, which include image data of pertinent pixels in the rectangular regions.
Abstract:
An excellent optical fiber built-in type composite insulator of reduced damage rate in the producing operation and the handling operation thereof, reduced loss of initial light signal transmission and in a desired temperature range, and reduced trouble rate after thermal shock test, is provided. The optical fiber built-in type composite insulator of the present invention having a penetration hole in the central axis portion of the insulator, an optical fiber extending in the penetration hole, and an inorganic glass arranged at both end portions of the penetration hole for sealing the optical fiber therein, comprises protective tubes each having a bore of an inner diameter of substantially equal to the outer diameter of coating portion of the optical fiber to allow insertion of the coating portion of the optical fiber therethrough, each arranged in the penetration hole at such a position that a portion of a coating portion of the optical fiber and a portion of the coating-stripped portion of the optical fiber exist in each bore of the protective tube to protect the portions of the coating portion and the coating-stripped portion of the optical fiber in the both end portions of the penetration hole.
Abstract:
An excellent optical fiber built-in type composite insulator including at least two insulator bodies each having a penetration bore, at least one optical fiber inserted in the penetration bores, and sealing structures for the penetration bores of the insulator bodies and for a joining layer of opposing end surfaces of adjacent insulator bodies, is provided, which effectively prevents leakage of inner silicone grease, bending and breakage of the optical fiber, leakage of electric current along the penetration bores, short circuited trouble, and destruction of the insulator bodies, improves joining strength of the opposing end surfaces of the insulator bodies, and maintains the joining strength for a long period, affords a change of numbers of the insulator bodies, and facilitates the production. A method of producing such composite insulator is also provided.
Abstract:
In a method and apparatus for removing artifacts from an image generated a charged partial beam scanning device, a scanning method is determined, and the frequency of an artifact appearing on an image can then be determined, based on scanning method. A step 703, a frequency domain for removing an artifact can be determined from the vertical and horizontal widths determined by experimentation in advance with respect to the frequency position Photography is performed to obtain an image, which is Fourier transformed and the determined frequency domain is replaced, for example, by “0.” The resulting image is subjected to inverse Fourier transformation, and displayed and stored. The flow of such processing enables decreasing an artifact appearing on an image, depending on a scanning method. The frequency domain (vertical and horizontal widths) that is to be eliminated and a method for replacement by “0” are determined in advance, depending on the kind of inspected samples and a method can be selected depending on the kind of samples.
Abstract:
A charged particle beam apparatus for obtaining information of an uneven surface or a depression/protrusion of a sample by irradiating a charged particle beam to a sample having an uneven surface or a depression/protrusion at a plurality of focal positions, measuring signal emitted from the sample, and comparing profile waveforms corresponding to edge portions of the uneven surface.
Abstract:
A pattern matching apparatus comprising: means for storing photographed image data of a semiconductor device; means for storing CAD data of said semiconductor device; an information input means for inputting information on the white band width contained in said image data; a pattern extracting means for extracting a pattern on the semiconductor device from said image data by using the white band width information; and a matching means for matching said pattern with the CAD data.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
Information indicating the reason for a failure of template matching is provided. Difference information between a first image, which is referred to as a template, and a third image that is selected by the operator from a second image and that is larger than the template is displayed.
Abstract:
In step 701, the scanning method is determined. In step 702, according to the scanning method determined in step 701, the frequency of an artifact appearing on an image can be determined based on the relation depicted with reference to FIG. 5. In step 703, a frequency domain for removing an artifact is determined from the vertical and horizontal widths determined by such as experimental in advance with respect to the frequency position of step 702. In steps 704 and 705, photography is performed to obtain an image. An image obtained is Fourier transformed in step 706 and the frequency domain determined in step 703 is replaced, for example, by “0.” Its image is subjected to inverse Fourier transformation in step 708, and then displayed and stored in step 709. The flow of such processing enables decreasing an artifact appearing on an image, depending on a scanning method. A frequency domain (vertical and horizontal widths) eliminated in the step 703 and a method for replacement by “0” in the step 707 is determined in advance depending on the kind of inspected samples and a method can be selected depending on the kind of samples.