Abstract:
An evaluation value indicative of the extent of lines in each direction is calculated for a pre-processed image in which 0s are filled in and extended in the lateral direction of the inputted image and which has been reduced ⅛th in the longitudinal direction. To obtain the angle of rotation of an image from the change in the evaluation value obtained while the angle relative to the lateral direction of the pre-processed image is modified in small steps, a parallel line is drawn for each direction, a projection is taken, and the sum of squares serves as the evaluation value of the direction. The direction having the highest evaluation value serves as the obtained direction of rotation from the normal position. The projection of each direction references the point of intersection between the parallel line drawn for each direction and the coordinate line of the horizontal axis.
Abstract:
The present invention provides a unified template matching technique which allows an adequate matching position to be provided even in an image with a distorted pattern shape and a variation in edge intensity. A correlation value contribution rate map is created for the vicinity of each of top candidate positions obtained by applying a centroid distance filter to a normalized correlation map resulting from template matching. A corrected intensity image is created from the correlation value contribution rate maps. Luminance correction is performed based on the corrected intensity image. Local matching is performed again on the vicinity of each candidate position. The candidates are then re-sorted based on candidate positions and correlation values newly obtained. Thus, even in an image with a distorted pattern shape and a variation in edge intensity, an adequate matching position can be provided in a unified manner.
Abstract:
The present invention is a template matching processing device capable of evaluating a similarity degree which supports even a case of intensive morphological change between a design image and a photographic image. In the template matching processing device, matching processing between the design image and the photographic image is performed, a partial design image is obtained by clipping a portion having the highest correlation (step 101), and processing for deforming the photographic image in accordance with the clipped design image (steps 102 to 105) is performed, so that correlation between the deformed image obtained and the design image is taken to be set as the similarity degree.
Abstract:
An inspection apparatus and method outputs an accurate matching position even if a search image contains a pattern similar to a template. An image search unit includes a relative position comparing unit which compares the relative position of a template in a template selection image with the relative position of a location currently being searched for in a search image and outputs the amount of position mismatch between the relative positions. A matching position determining unit determines a matching position by taking into consideration the amount of position mismatch in addition to search image similarity distribution information.
Abstract:
The present invention provides a unified template matching technique which allows an adequate matching position to be provided even in an image with a distorted pattern shape and a variation in edge intensity. A correlation value contribution rate map is created for the vicinity of each of top candidate positions obtained by applying a centroid distance filter to a normalized correlation map resulting from template matching. A corrected intensity image is created from the correlation value contribution rate maps. Luminance correction is performed based on the corrected intensity image. Local matching is performed again on the vicinity of each candidate position. The candidates are then re-sorted based on candidate positions and correlation values newly obtained. Thus, even in an image with a distorted pattern shape and a variation in edge intensity, an adequate matching position can be provided in a unified manner.
Abstract:
An inspection apparatus performing template matching of a search image capable of outputting a correct matching position even if a pattern similar to a template exists in the search image is provided. The inspection apparatus includes a template cutout means for cutting out a template from a template selection image, a marginal similarity calculation means for calculating marginal similarity distribution information, which is a similarity distribution of the template selection image to the template, a search image similarity calculation part for calculating search image similarity distribution information, which is a similarity distribution of the search image to the template, a similarity distribution-to-similarity distribution similarity calculation means for calculating similarity distribution-to-similarity distribution similarity information between the marginal similarity distribution information and the search image similarity distribution information, and a matching position determination part for determining a matching position based on the similarity distribution-to-similarity distribution similarity.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample, based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
A charged particle beam apparatus for obtaining information of an uneven surface or a depression/protrusion of a sample by irradiating a charged particle beam to a sample having an uneven surface or a depression/protrusion at a plurality of focal positions, measuring signal emitted from the sample, and comparing profile waveforms corresponding to edge portions of the uneven surface.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
The present invention relates to a method and apparatus for measuring a three-dimensional profile using a SEM, capable of accurately measuring the three-dimensional profile of even a flat surface or a nearly vertical surface based on the inclination angle dependence of the amount of secondary electron image signal detected by the SEM. Specifically, a tilt image obtaining unit obtains a tilt image (a tilt secondary electron image) I(2) of flat regions a and c1 on a pattern to be measured by using an electron beam incident on the pattern from an observation direction φ(2). Then, profile measuring units presume the slope (or surface inclination angle) at each point on the pattern based on the obtained tilt image and integrate successively each presumed slope value (or surface inclination angle value) to measure three-dimensional profiles S2a and S2c. This arrangement allows a three-dimensional profile to be accurately measured.