Abstract:
A high-temperature gas pressure measuring method includes a pressure measuring gas housing dividing step for dividing a pressure measuring gas housing into a pressure measuring room and a pressure referring room by a metal diaphragm; a gas introducing step for introducing high temperature gas into the pressure measuring room and introducing a reference pressure gas into the pressure referring room; a displacement measuring step for measuring a displacement of the metal diaphragm, wherein the displacement is caused by pressure difference between the two rooms in pressure measuring gas housing; and a pressure determining step for measuring the pressure of a high-temperature and/or corrosive to-measure pressure gas. The method dispenses with any corrosion-resistant and heat-resistant pressure sensing component and thus cuts costs.
Abstract:
A mixed power supply device includes a power supply component for providing a DC voltage; a DC-DC conversion module coupled to the power supply component to receive the DC voltage and output a stable DC voltage; a current transformation module coupled between the DC-DC conversion module and a load to receive the stable DC voltage and convert the stable DC voltage into an AC voltage; and a merging network switching switch coupled to the current transformation module to connect the current transformation module and a utility power network in parallel or disconnect the current transformation module from the utility power network, allowing a load to receive merging network mode-based power supply or standalone mode-based power supply, wherein, in the merging network mode, the current transformation module performs unbalanced current compensation on load unbalance of the load.
Abstract:
In a method for evaporation depositing uniform thin films, a film is deposited on a substrate of a vacuum environment while maintaining a constant deposition rate. A cover is installed on a wall of the evaporation vessel. When the evaporation material is heated to an evaporation state and the interior of the evaporation vessel reaches a first vapor saturation pressure, the vapor of the evaporation material flows towards a pressure stabilizing chamber. When the pressure stabilizing chamber reaches a second vapor saturation pressure which is smaller than the first vapor saturation pressure, the vacuum environment has a vacuum background pressure which is smaller than the second vapor saturation pressure, so that the evaporation material vapor flows from the pressure stabilizing chamber towards the vacuum environment at constant rate due to the pressure difference, so as to evaporate the substrate.
Abstract:
A high-admittance local suppression highlight imaging system includes a first optical zoom lens having a plurality of lenses, inclusive of at least three aspheric lenses, to thereby function as an imaging system; a second optical zoom lens including a plurality of lenses symmetrically arranged to thereby function as a relay system; a polarizing beam splitter disposed between the first optical zoom lens and the second optical zoom lens; a LCoS disposed at an imaging point at an end of the first optical zoom lens; and a photosensitive component provided in form of a CCD or a CMOS and disposed at an imaging point at an end of the second optical zoom lens. Therefore, the imaging system features enhanced admittance of light, ensures that images captured during a nocturnal picture-taking process will be clear but not overexposed, and is applicable to nocturnal vehicle surveillance and the other safety detection systems.
Abstract:
In a method and apparatus for evaporation depositing uniform thin films, a film is deposited on a substrate of a vacuum environment while maintaining a constant deposition rate. A cover is installed on a wall of the evaporation vessel. When the evaporation material is heated to an evaporation state and the interior of the evaporation vessel reaches a first vapor saturation pressure, the vapor of the evaporation material flows towards a pressure stabilizing chamber. When the pressure stabilizing chamber reaches a second vapor saturation pressure which is smaller than the first vapor saturation pressure, the vacuum environment has a vacuum background pressure which is smaller than the second vapor saturation pressure, so that the evaporation material vapor flows from the pressure stabilizing chamber towards the vacuum environment at constant rate due to the pressure difference, so as to evaporate the substrate.
Abstract:
The present invention relates to an inverter system for energy-storing microgrid and a controlling method thereof, wherein the inverter system for energy-storing microgrid is integrated with a detecting module, a controlling and processing module, a visual resistor algorithmic processor, and a PWM signal generator. Moreover, the controlling and processing module is installed with a power-voltage reducing function and a reactive power-frequency reducing function for making the controlling and processing module be able to properly distribute the intensity and output ratio of all the output currents of the inverters according to the charge states of battery modules and load currents. Therefore, the current supply of each of the parallel connected inverters in the inverter system can be automatically distributed and modulated for effectively providing necessary electric power to each of connected loads, respectively.
Abstract:
An intake/outlet pipe optimization method includes the steps of providing a rotary engine, measuring the pressure in an operation of the engine, designing the appearance of the intake/outlet pipes, adjusting the pressure wave in an air pipe and the pressure in an air chamber of the engine to increase the air intake and improve the output horsepower of the engine. The intake pipe is a tapered pipe having the pipe diameter on an intake side greater than the pipe diameter on the engine side; and the outlet pipe is an inversely tapered pipe having the pipe diameter on the engine side smaller than the pipe diameter on the outlet side.
Abstract:
A quick subpixel absolute positioning device and method are introduced. The method includes the steps of (A) capturing a real-time speckle pattern of a target surface; (B) providing a coarse-precision speckle coordinate pattern and a plurality of fine-precision speckle coordinate patterns, wherein the coarse-precision speckle coordinate pattern and the fine-precision speckle coordinate patterns include a coordinate value; (C) comparing the real-time speckle coordinate pattern with the coarse-precision speckle coordinate pattern by an algorithm and then comparing the real-time speckle coordinate pattern with the fine-precision speckle coordinate patterns to obtain a coordinate value, wherein each said coarse-precision speckle coordinate pattern corresponds to a set of fine-precision speckle coordinate patterns, and the fine-precision speckle coordinate patterns are obtained when the coarse-precision speckle coordinate pattern is captured again and then captured repeatedly according to a fixed fine-precision displacement distance. Accordingly, the subpixel positioning is attained by quick comparison and manifests high precision.
Abstract:
A method of manufacturing of a polymer composite includes the steps of (1) putting a nanofiller and a polymer material in a high-pressure device and eliminating air therefrom; (2) providing a gas in the high-pressure device and performing a heating and blending process on the nanofiller and the polymer material at a first pressure and a first temperature; (3) changing the pressure and temperature of the high-pressure device to a second pressure and a second temperature to thereby obtain a polymer composite; and (4) performing a degassing process on the polymer composite. Accordingly, the method is effective in manufacturing a polymer composite which includes a uniformly dispersed nanofiller.
Abstract:
In a method and apparatus for evaporation depositing uniform thin films, a film is deposited on a substrate of a vacuum environment while maintaining a constant deposition rate. A cover is installed on a wall of the evaporation vessel. When the evaporation material is heated to an evaporation state and the interior of the evaporation vessel reaches a first vapor saturation pressure, the vapor of the evaporation material flows towards a pressure stabilizing chamber. When the pressure stabilizing chamber reaches a second vapor saturation pressure which is smaller than the first vapor saturation pressure, the vacuum environment has a vacuum background pressure which is smaller than the second vapor saturation pressure, so that the evaporation material vapor flows from the pressure stabilizing chamber towards the vacuum environment at constant rate due to the pressure difference, so as to evaporate the substrate.