Abstract:
A chemical mechanical polishing apparatus has a movable platen, a drive mechanism and a chucking mechanism. The drive mechanism is attached to the platen, is configured to support a generally linear polishing sheet with a portion of the polishing sheet extending over the platen, and is configured to incrementally advance the polishing sheet in a linear direction relative to the platen. The chucking mechanism is configured to intermittently secure the portion of the polishing sheet to the platen.
Abstract:
Methods, systems, and mediums of controlling a semiconductor manufacturing process are described. The method comprises the steps of measuring at least one critical dimension of at least one device being fabricated on at least one of the plurality of wafers, determining at least one process parameter value on the at least one measured dimension, and controlling at least one semiconductor manufacturing tool to process the at least one of the plurality of wafers based on the at least one parameter value. A variation in the at least one critical dimension causes undesirable variations in performance of the at least one device, and at least one process condition is directed to controlling the processing performed on the plurality of wafers. The at least one manufacturing tool includes at least one of an implanter tool and an annealing tool.
Abstract:
A chemical mechanical polishing apparatus has a movable platen, a drive mechanism and a chucking mechanism. The drive mechanism is attached to the platen, is configured to support a generally linear polishing sheet with a portion of the polishing sheet extending over the platen, and is configured to incrementally advance the polishing sheet in a linear direction relative to the platen. The chucking mechanism is configured to intermittently secure the portion of the polishing sheet to the platen.
Abstract:
A chemical mechanical polishing apparatus has a rotatable platen, a polishing sheet that is wider than the substrate extending between two reels, a drive mechanism to advance the polishing sheet, and a chucking mechanism to intermittently secure the polishing sheet to the platen. The platen can have a platen base that is adaptable to receive either a circular platen top or a rectangular platen top.
Abstract:
An apparatus and associated methods for polishing semiconductor wafers and other workpieces that includes polishing surfaces located at multiple polishing stations. Multiple wafer heads, preferably at least one greater in number than the number of polishing stations, can be loaded with individual wafers. The wafer heads are suspended from a rotatable support, which provides circumferential positioning of the heads relative to the polishing surfaces, and the wafer heads move linearly with respect to the polishing surface, thus providing relative linear motion between the wafer and the polishing station. A load/unload station may be located at a position symmetric with the polishing surfaces. The rotatable support can simultaneously position one of the heads over the load/unload station while the remaining heads are located over polishing stations for wafer polishing so that loading and unloading of wafers can be performed concurrently with wafer polishing. The multiple polishing stations can be used to sequentially polish a wafer held in a wafer head in a step of multiple steps. The steps may be equivalent, may provide polishes of different finish, or may be directed to polishing different levels. Alternately, more than one wafer may equivalently be polished at multiple polishing stations.
Abstract:
An article of manufacture, method, and apparatus are provided for planarizing a substrate surface. In one aspect, an article of manufacture is provided for polishing a substrate including a polishing article having a body comprising at least a portion of fibers coated with a conductive material, conductive fillers, or combinations thereof, and adapted to polish the substrate. In another aspect, a polishing article includes a body having a surface adapted to polish the substrate and at least one conductive element embedded in the polishing surface, the conductive element comprising dielectric or conductive fibers coated with a conductive material, conductive fillers, or combinations thereof. The conductive element may have a contact surface that extends beyond a plane defined by the polishing surface. A plurality of perforations and a plurality of grooves may be formed in the articles to facilitate flow of material through and around the polishing article.
Abstract:
An apparatus and associated methods for polishing semiconductor wafers and other workpieces that includes polishing surfaces located at multiple polishing stations. Multiple wafer heads, preferably at least one greater in number than the number of polishing stations, can be loaded with individual wafers. The wafer heads are suspended from a rotatable support, which provides circumferential positioning of the heads relative to the polishing surfaces, and the wafer heads move linearly with respect to the polishing surface, thus providing relative linear motion between the wafer and the polishing station. A load/unload station may be located at a position symmetric with the polishing surfaces. The rotatable support can simultaneously position one of the heads over the load/unload station while the remaining heads are located over polishing stations for wafer polishing so that loading and unloading of wafers can be performed concurrently with wafer polishing. The multiple polishing stations can be used to sequentially polish a wafer held in a wafer head in a step of multiple steps. The steps may be equivalent, may provide polishes of different finish, or may be directed to polishing different levels. Alternately, more than one wafer may equivalently be polished at multiple polishing stations.
Abstract:
A carrier head for a chemical mechanical polishing system includes a substrate sensing mechanism. The carrier head includes a base and a flexible member connected to the base to define a chamber. A lower surface of the flexible member provides a substrate receiving surface. The substrate sensing mechanism includes a sensor to measure a pressure in the chamber and generate an output signal representative thereof, and a processor configured to indicate whether the substrate is attached to the substrate receiving surface in response to the output signal.
Abstract:
A system/method for interactively monitoring and adjusting product output from a module that includes two or more preparation tools. The output is a result of the coordinated effort of the two or more semiconductor preparation tools making up the module. The first of the tools is capable of implementing a first process on a semiconductor product and producing a first output. The second of the tools is configured to receive as input the first output from the first tool. The second tool is also capable of implementing a second process on the semiconductor product and producing a second output. A module control mechanism is capable of facilitating the exchange of information between the first tool and the second tool so that the module yields a desired semiconductor product output. Certain information can also be exchanged between the first and second tools. Other system/method embodiments for output/production control are also envisioned.
Abstract:
In chemical mechanical polishing, a substrate is planarized with one or more fixed-abrasive polishing pads. Then the substrate is polished with a standard polishing pad to remove scratch defects created by the fixed-abrasive polishing pads.