Abstract:
Embodiments are provided for forming a patterned dental positioning appliance. One method includes forming a virtual shell shaped to receive one or more teeth of a virtual model of a patient's dentition, and digitally applying a pattern on an inner surface within cavities of the virtual shell, where the pattern contacts at least a portion of the one or more teeth and modifies repositioning forces exerted on the one or more teeth. In some cases the pattern is a raised pattern, such as a raised mesh pattern. In forming the dental appliance, in some cases, the shell and the pattern are formed of the same material to form a unitary piece of the polymer material.
Abstract:
A dental appliance for positioning a patient's teeth includes a removable orthodontic tooth positioning appliance having teeth receiving cavities shaped to directly receive at least some of the patient's teeth and apply a resilient positioning force to the patient's teeth. The appliance includes a hard polymer layer having a hard polymer layer elastic modulus disposed between a first soft polymer layer having a first soft polymer layer elastic modulus and a second soft polymer layer having a second soft polymer layer elastic modulus. The hard polymer layer elastic modulus is greater than each of the first soft polymer layer elastic modulus and the second soft polymer layer elastic modulus. At least one of the first soft polymer layer and the second soft polymer layer has a flexural modulus of greater than about 35,000 psi.
Abstract:
Methods, systems, and apparatus's for improving orthodontic treatments. In an embodiment, an orthodontic system including a tactile object is provided for modulating an engagement between a tooth attachment and an orthodontic appliance.
Abstract:
Detection of placement of dental aligners in patient mouth on teeth for indication of wearing compliance. Described herein are apparatuses and methods for detecting wearing, including compliance. In some variations these apparatuses and methods may include a sensor configured to detect deflection of the one or more deflectable structures. In some variations, these apparatuses and methods may include a proximity sensor coupled to the appliance shell and configured to generate sensor data when in proximity with intraoral tissue.
Abstract:
Provided herein are photopolymerizable monomers, optionally for use as reactive diluents in a high temperature lithography-based photopolymerization process, a method of producing polymers using said photopolymerizable monomers, the polymers thus produced, and orthodontic appliances comprising the polymers.
Abstract:
A dental appliance having an integrally formed reservoir and/or an ornamental design integrated thereon. The ornamental design can be selected or customized by a patient. The design can be created by directing energy to the dental appliance to alter a material property of at least a portion of the appliance to create the design. Alternatively, a groove or recess can be formed on a surface of the appliance to either mechanically retain an ornamental design or the groove or recess can be filled with ink to form the design. The appliance, including the integrally formed reservoir, can be formed using direct fabrication techniques.
Abstract:
A dental appliance for positioning a patient's teeth includes a removable orthodontic tooth positioning appliance having teeth receiving cavities shaped to directly receive at least some of the patient's teeth and apply a resilient positioning force to the patient's teeth. The appliance includes a hard polymer layer having a hard polymer layer elastic modulus disposed between a first soft polymer layer having a first soft polymer layer elastic modulus and a second soft polymer layer having a second soft polymer layer elastic modulus. The hard polymer layer elastic modulus is greater than each of the first soft polymer layer elastic modulus and the second soft polymer layer elastic modulus. At least one of the first soft polymer layer and the second soft polymer layer has a flexural modulus of greater than about 35,000 psi.
Abstract:
A dental appliance for positioning a patient's teeth includes a removable orthodontic tooth positioning appliance having teeth receiving cavities shaped to directly receive at least some of the patient's teeth and apply a resilient positioning force to the patient's teeth. The appliance includes a hard polymer layer having a hard polymer layer elastic modulus disposed between a first soft polymer layer having a first soft polymer layer elastic modulus and a second soft polymer layer having a second soft polymer layer elastic modulus. The hard polymer layer elastic modulus is greater than each of the first soft polymer layer elastic modulus and the second soft polymer layer elastic modulus. At least one of the first soft polymer layer and the second soft polymer layer has a flexural modulus of greater than about 35,000 psi.
Abstract:
A dental appliance having an integrally formed reservoir and/or an ornamental design integrated thereon. The ornamental design can be selected or customized by a patient. The design can be created by directing energy to the dental appliance to alter a material property of at least a portion of the appliance to create the design. Alternatively, a groove or recess can be formed on a surface of the appliance to either mechanically retain an ornamental design or the groove or recess can be filled with ink to form the design. The appliance, including the integrally formed reservoir, can be formed using direct fabrication techniques.