Abstract:
Techniques for coalescing alert notifications for applications and/or services to a primary user device of a set of multiple associated user devices within proximity of each other. When a user device is not in proximity to other associated user devices, the user device functions as a primary user device and provides alert notifications based on a default configuration and/or a user configurable setting. When the user device is within proximity of one or more other associated user devices, the user devices exchange relevant capability information and information for applications that are synchronized via network-based services. The user devices negotiate to determine a user device that serves as the primary user device to provide alert notifications for a set of applications and services common to a set of user devices. The other user devices are configured to reduce and/or suppress the alert notifications.
Abstract:
A method for operating a distributed wireless audio system including several loudspeaker cabinets all of which can communicate with each other as part of a computer network. The method receives temperature data that is indicative of temperature of a first loudspeaker cabinet, which has a network master responsibility of obtaining an audio signal from an audio source and wirelessly transmitting some of the audio signal to a second loudspeaker cabinet of several loudspeaker cabinets, for playback by the second loudspeaker cabinet, while playing back some of the audio signal by the first loudspeaker cabinet. The method determines whether a thermal threshold of the first loudspeaker cabinet has been reached, based on the temperature data. The method, in response to the thermal threshold being reached, gives up the network master responsibility from the first loudspeaker cabinet to the second loudspeaker cabinet, where doing so reduces temperature in the first loudspeaker cabinet.
Abstract:
Methods and apparatus for dynamic, adaptive scanning of communication channels are provided. A device alternates between scan cycles and rest cycles. A scan cycle includes interleaved intervals of scanning and resting. A scan interval may involve active or passive scanning, and a rest interval may be active or inactive. An active rest interval is spent tending to a communication requirement other than scanning (e.g., an infrastructure connection, a peer-to-peer connection). An inactive rest interval may be spent in a low-power mode of operation. Rest cycles, like rest intervals, may also be active or inactive. Durations of rest cycles and rest intervals increase each time a scan cycle completes without detection of any significant event or signal (e.g., until they reach a maximum). Upon detection of a significant event, they decrease, possibly by being reset to default durations.
Abstract:
This document describes multicast communication between wireless devices. A scheduling frame may be wirelessly transmitted by a wireless device. The scheduling frame may include a multicast address indicating a group of intended receiving devices for a payload frame. The scheduling frame may further include scheduling information indicating an order for the group of intended receiving devices to transmit acknowledgement information for the payload frame. A payload frame may also be wirelessly transmitted by the wireless device. The payload frame may include payload information intended for the group of intended receiving devices. Additionally, acknowledgement frames may be wirelessly received by the wireless device from at least a subset of the group of intended receiving devices. The acknowledgement frames may be received according to the order indicated in the scheduling information.
Abstract:
In some embodiments, one or more wireless stations operate according to Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling attributes may include a native scheduler rank and a NAN data cluster scheduler rank. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between wireless stations, including mobile stations.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to aspects of NAN communication, including service discovery proxy registration, publishing, and subscription of services via the proxy, maintenance of the proxy, and de-registration of the proxy.
Abstract:
An apparatus and methods are provided for initiating a network connection between a first device and a second device. While one or more high-power network interfaces of the first device are in a dormant state, the first device communicates with a second device via the first device's low-power network interface. The first device can determine, based on the communication, whether to establish a network connection with the second device via a high-power network interface of the first device. Next, if the first device is to establish the network connection with the second device via the high-power network interface, the device can wake the first high-power network interface and connect to the second device via the first high-power network interface.
Abstract:
Methods and apparatus for dynamic, adaptive scanning of communication channels are provided. A device alternates between scan cycles and rest cycles. A scan cycle includes interleaved intervals of scanning and resting. A scan interval may involve active or passive scanning, and a rest interval may be active or inactive. An active rest interval is spent tending to a communication requirement other than scanning (e.g., an infrastructure connection, a peer-to-peer connection). An inactive rest interval may be spent in a low-power mode of operation. Rest cycles, like rest intervals, may also be active or inactive. Durations of rest cycles and rest intervals increase each time a scan cycle completes without detection of any significant event or signal (e.g., until they reach a maximum). Upon detection of a significant event, they decrease, possibly by being reset to default durations.
Abstract:
This document describes multicast communication between wireless devices. A scheduling frame may be wirelessly transmitted by a wireless device. The scheduling frame may include a multicast address indicating a group of intended receiving devices for a payload frame. The scheduling frame may further include scheduling information indicating an order for the group of intended receiving devices to transmit acknowledgement information for the payload frame. A payload frame may also be wirelessly transmitted by the wireless device. The payload frame may include payload information intended for the group of intended receiving devices. Additionally, acknowledgement frames may be wirelessly received by the wireless device from at least a subset of the group of intended receiving devices. The acknowledgement frames may be received according to the order indicated in the scheduling information.