Abstract:
A single chip mobile wireless device capable of receiving and transmitting over one wireless network at a time maintains registration on two wireless communication networks that each use different communication protocols in parallel. Periodically, the mobile wireless device tunes one or more receivers from a first wireless network to a second wireless network in order to listen for paging messages addressed to the mobile wireless device from the second wireless network. The first wireless network suspends allocation of radio resources to the mobile wireless device based on receipt of a suspension message from the mobile wireless device, or based on knowledge of a paging cycle for mobile wireless device in the second wireless network, or based on detection of an out of synchronization condition with the mobile wireless device.
Abstract:
A client device and a host device may create a local connection for providing wide area network access, such as Internet access, to the client device. In some embodiments, the client device may have limited network capabilities and may not be able to access the Internet without the host device. The client device may provide its speed and direction in a message to potential host devices. A host device may calculate a suitability metric, based on the speed and direction of the client as well as connection properties of the networks, which indicates an ability for the host device to connect the client device to the Internet. The host device may provide the suitability metric within a connection request to the client device. Based on the suitability metric and/or other factors, the client device and the host device may establish the local connection.
Abstract:
Techniques are disclosed relating to a mobile device that initiates handovers from short-range networks to long-range networks. In various embodiments, a mobile device includes one or more radios that communicate using a plurality of radio access technologies (RATs) including a cellular RAT and a short-range RAT. In such an embodiment, the mobile device stores an indication that the cellular RAT is a preferred RAT for a communication session. The mobile may establish the communication session using the preferred RAT, and in response to determining that a quality of the preferred RAT fails to satisfy a set of quality criteria, may request that the communication session use the short-range RAT. In some embodiments, the mobile device analyzes average packet error rate for the communication session and in response to the average packet error rate satisfying a threshold, requests that the communication session use the cellular RAT.
Abstract:
Embodiments relate to apparatus, systems, and methods for reception of calls on a mobile device that includes Wi-Fi and cellular radios. The mobile device may be configured to establish communication on a Wi-Fi network with a cellular carrier. The mobile device may further be configured to register a first IP address with an IMS server for the Wi-Fi network communication and register a second IP address with the IMS server for the cellular network communication (or register different ports of a single IP address with Wi-Fi and cellular). Upon occurrence of a mobile terminating call from the cellular carrier, the mobile device may receive an incoming call notification on one or both of the Wi-Fi network using the first IP address and the cellular network using the second IP address.
Abstract:
In video conferencing over a radio network, the radio equipment is a major power consumer especially in cellular networks such as LTE. In order to reduce the radio power consumption in video conferencing, it is important to introduce an enough radio inactive time. Several types of data buffering and bundling can be employed within a reasonable range of latency that doesn't significantly disrupt the real-time nature of video conferencing. In addition, the data transmission can be synchronized to the data reception in a controlled manner, which can result in an even longer radio inactive time and thus take advantage of radio power saving modes such as LTE C-DRX.
Abstract:
A method for seamless session mobility on wireless communication device including a first physical interface and a second physical interface is provided. The method can include a wireless communication device anchoring a data session for an application to a logical interface associated with the first physical interface. The method can further include the wireless communication device routing data for the data session sent to the logical interface by the application to the second physical interface for transmission via the second physical interface in an instance in which the wireless communication device has an active connection to a radio access network via the second physical interface.
Abstract:
Facilitating multiple subscriber identity support in a wireless user equipment (UE) device. A UE may include or be coupled to multiple subscriber identity modules (SIMs). The UE may be configured to perform cellular communications with a first cellular network using a first subscriber identity provided by a first SIM. The UE may also be configured to perform cellular communications with a second cellular network using a second subscriber identity provided by a second SIM. The cellular communications with the first cellular network and the second cellular network may be performed concurrently using shared radio resources.
Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
Disclosed are methods and apparatuses for improving reliability and reducing power consumption for FR2 RRM. In one aspect, a UE is capable of maintaining connectivity of a first RAT and connectivity of a second RAT. The UE is configured to send a RAT request to the cellular network, the RAT request indicating at least one preferred RAT that is selected from the first RAT and the second RAT, and use the at least one preferred RAT to carry data transmission between the UE and the cellular network.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform negotiation of bearer type configuration and/or related parameters. A user equipment device (UE) and/or network may determine a bearer configuration and/or other parameters based on information or measurements of the UE. The UE and the BS may exchange data using a negotiated configuration.