Abstract:
A spectroscopic scatterometer detects both zero order and higher order radiation diffracted from an illuminated spot on a target grating. The apparatus forms and detects a spectrum of zero order (reflected) radiation, and separately forms and detects a spectrum of the higher order diffracted radiation. Each spectrum is formed using a symmetrical phase grating, so as to form and detect a symmetrical pair of spectra. The pair of spectra can be averaged to obtain a single spectrum with reduced focus sensitivity. Comparing the two spectra can yield information for improving height measurements in a subsequent lithographic step. The target grating is oriented obliquely so that the zero order and higher order radiation emanate from the spot in different planes. Two scatterometers can operate simultaneously, illuminating the target from different oblique directions. A radial transmission filter reduces sidelobes in the spot and reduces product crosstalk.
Abstract:
Metrology targets are formed by a lithographic process, each target comprising a bottom grating and a top grating. Overlay performance of the lithographic process can be measured by illuminating each target with radiation and observing asymmetry in diffracted radiation. Parameters of metrology recipe and target design are selected so as to maximize accuracy of measurement of overlay, rather than reproducibility. The method includes calculating at least one of a relative amplitude and a relative phase between (i) a first radiation component representing radiation diffracted by the top grating and (ii) a second radiation component representing radiation diffracted by the bottom grating after traveling through the top grating and intervening layers. The top grating design may be modified to bring the relative amplitude close to unity. The wavelength of illuminating radiation in the metrology recipe can be adjusted to bring the relative phase close to π/2 or 3π/2.
Abstract:
A lithographic apparatus is disclosed. The lithographic apparatus includes a scatterometer configured to measure a property of the substrate. The scatterometer includes a radiation source configured to produce a radiated spot on a target on the substrate, where the radiated spot includes positions on the target. The scatterometer further includes a detector configured to generate measurement signals that correspond to respective ones of the positions of the radiated spot and a processor configured to output, based on the measurement signals, a single value that is representative of the property of the substrate.
Abstract:
Systems, methods, and apparatus are provided for determining overlay of a pattern on a substrate with a mask pattern defined in a resist layer on top of the pattern on the substrate. A first grating is provided under a second grating, each having substantially identical pitch to the other, together forming a composite grating. A first illumination beam is provided under an angle of incidence along a first horizontal direction. The intensity of a diffracted beam from the composite grating is measured. A second illumination beam is provided under the angle of incidence along a second horizontal direction. The second horizontal direction is opposite to the first horizontal direction. The intensity of the diffracted beam from the composite grating is measured. The difference between the diffracted beam from the first illumination beam and the diffracted beam from the second illumination beam, linearly scaled, results in the overlay error.
Abstract:
Disclosed is a metrology apparatus for measurement of a target formed on a substrate by a lithographic process and associated method. The metrology apparatus comprises a radiation source operable to provide first radiation; a configured solid high harmonic generation medium being configured to receive and be excited by said first radiation to generate high harmonic second radiation from an output surface of the configured solid high harmonic generation medium; and a detection arrangement operable to detect said second radiation, at least a portion of which having been scattered by said target. The configured solid high harmonic generation medium is configured to shape the beam of said second radiation and/or separate said first and second radiation.
Abstract:
A computer program product causes a processor to execute a process of causing an optical system to illuminate at least one structure on a substrate that comprises first repetitive features at a first pitch in a first layer and second repetitive features at a second pitch in a second layer, the first repetitive features at least partially overlapping with the second repetitive features. The first pitch is different from the second pitch. The processor causes the optical system to receive radiation scattered by the at least one structure and transmit a portion of the received scattered radiation to a sensor arranged in an image plane of the optical system or in a plane conjugate with the image plane for detecting the received scattered radiation and configured to detect a characteristic of radiation impinging on the sensor. The processor then determines a characteristic of interest of the structure.
Abstract:
A dark field digital holographic microscope and associated metrology method is disclosed which is configured to determine a characteristic of interest of a structure. The dark field digital holographic microscope includes an illumination branch for providing illumination radiation to illuminate the structure; a detection arrangement for capturing object radiation resulting from diffraction of the illumination radiation by the structure; and a reference branch for providing reference radiation for interfering with the object radiation to obtain an image of an interference pattern formed by the illumination radiation and reference radiation. The reference branch has an optical element operable to vary a characteristic of the reference radiation so as to reduce and/or minimize variation in a contrast metric of the image within a field of view of the dark field digital holographic microscope at a detector plane.
Abstract:
Systems, methods, and apparatus are provided for determining overlay of a pattern on a substrate with a mask pattern defined in a resist layer on top of the pattern on the substrate. A first grating is provided under a second grating, each having substantially identical pitch to the other, together forming a composite grating. A first illumination beam is provided under an angle of incidence along a first horizontal direction. The intensity of a diffracted beam from the composite grating is measured. A second illumination beam is provided under the angle of incidence along a second horizontal direction. The second horizontal direction is opposite to the first horizontal direction. The intensity of the diffracted beam from the composite grating is measured. The difference between the diffracted beam from the first illumination beam and the diffracted beam from the second illumination beam, linearly scaled, results in the overlay error.
Abstract:
An illumination and detection apparatus for a metrology tool, and associated method. The apparatus includes an illumination arrangement operable to produce measurement illumination having a plurality of discrete wavelength bands and having a spectrum having no more than a single peak within each wavelength band. The detection arrangement includes a detection beamsplitter to split scattered radiation into a plurality of channels, each channel corresponding to a different one of the wavelength bands; and at least one detector for separate detection of each channel.
Abstract:
A metrology tool for determining a parameter of interest of a structure fabricated on a substrate, the metrology tool comprising: an illumination optical system for illuminating the structure with illumination radiation under a non-zero angle of incidence; a detection optical system comprising a detection optical sensor and at least one lens for capturing a portion of illumination radiation scattered by the structure and transmitting the captured radiation towards the detection optical sensor, wherein the illumination optical system and the detection optical system do not share an optical element.