Abstract:
A method includes determining a current pose of an augmented reality device in a physical space, and visually presenting, via a display of the augmented reality device, an augmented-reality view of the physical space including a predetermined pose cue indicating a predetermined pose in the physical space and a current pose cue indicating the current pose in the physical space.
Abstract:
The present disclosure provides a fluorination process which involves reacting a hydrohaloalkene of the formula RfC—Cl═CH2 with HF in a reaction zone in the presence of a fluorination catalyst selected from the group consisting of TaF5 and TiF4 to produce a product mixture containing a hydrohaloalkane of the formula RfCFClCH3, wherein Rf is a perfluorinated alkyl group.
Abstract:
A system for and a method of creating a coherent video data stream of an object moving between a plurality of areas covered by a plurality of data collecting devices is provided. The method includes selecting a plurality of data collecting devices from the plurality of data collecting devices, synchronizing video data streams from the selected plurality of data collecting devices, substantially simultaneously reviewing the video data streams from the selected plurality of data collecting devices, specifying periods of interest for the video data streams from the selected plurality of data collecting devices, and sequentially combining portions of the video data streams into the coherent video data stream, the portions corresponding to the specified periods of interest.
Abstract:
Disclosed is a process for the dehydrochlorination of 1,1,1,3-tetrachloropropane comprising contacting 1,1,1,3,tetrachloropropane in the vapor phase in a reaction zone with a catalyst comprising iron, to produce a product mixture comprising 1,1,3-trichloro-1-propene; and recovering said 1,1,3-trichloro-1-propene from the product mixture produced. Also disclosed is a process for the dehydrochlorination of 1,1,1,3-tetrachloropropane comprising heating 1,1,1,3-tetrachloropropane in the liquid phase to produce a mixture comprising 1,1,3-trichloro-1-propene, cooling said mixture, separating hydrogen chloride from said mixture and recovering 1,1,3-trichloro-1-propene.
Abstract:
Production processes and systems are provided that include reacting halogenated compounds, dehalogenating compounds, reacting alcohol's, reacting olefins and a saturated compounds, reacting reactants having at least two —CF3 groups with reactants having cyclic groups, RF-compositions such as RF-intermediates, RF-surfactants, RF-monomers, RF-monomer units, RF-metal complexes, RF-phosphate esters, RF-glycols, RF-urethanes, and or RF-foam stabilizers. The RF portion can include at least two groups —CF3 groups, at least three —CF3 groups, and/or at least two —CF3 groups and at least two —CH2 groups. Detergents, emulsifiers, paints, adhesives, inks, wetting agents, foamers, and defoamers including the Rf-surfactant composition are provided. Acrylics, resins, and polymers are provided that include a RF-monomer unit. Compositions are provided that include a substrate having a RF-composition thereover. Aqueous Film Forming Foam (“AFFF”) formulations are provided that can include RF-surfactants and/or RF-foam stabilizers are provided.
Abstract:
This disclosure relates to substantially atactic polymers of at least one of propylene, 1-butene or 1-pentene, processes for making such polymers and compositions including the polymers. The polymers may be used as lubricants or may be combined with low viscosity base stocks to form lubricants. The polymers may be made in the presence of a metallocene catalyst with a non-coordinating anion activator and optionally with hydrogen.
Abstract:
Disclosed is a process for the manufacture of 2,3,3,3-tetrafluoropropene comprising: (a) contacting 1,1,1,2,3-pentafluoropropane with a catalyst comprised of chromium (III) oxide having a surface area of at least 150 m2/g and having an alkali metal loading of at least 7 milligrams of alkali metal per 100 square meters of catalyst surface area, to produce a product mixture comprising 2,3,3,3-tetrafluoropropene and hydrogen fluoride; and (b) recovering said 2,3,3,3-tetrafluoropropene from the product mixture produced in (a).
Abstract:
Disclosed is a process for the manufacture of 2,3,3,3-tetrafluoropropene comprising: (a) dehydrofluorinating 1,1,1,2,3-pentafluoropropane in the presence of a dehydrofluorination catalyst comprised of chromium (III) oxide, and alkali metal, to produce a product mixture comprising 2,3,3,3-tetrafluoropropene and less than 20 parts per hundred 1,3,3,3-tetrafluoro-1-propene; and (b) recovering said 2,3,3,3-tetrafluoropropene from the product mixture produced in (a).
Abstract:
A navigation system is disclosed for providing navigational directions. It has a navigation device with a body provided with a receiving part. The receiving part has an inner surface provided with a connecting element of a first connection type. The navigation system further includes a docking system arranged to accommodate the navigation device. The docking system has an extending part provided with a connecting element of a second connection type. The connecting element of the second connection type is arranged for connection to the connecting element of the first connection type. The extending part further includes an outer surface with a shape similar to the inner surface of the receiving part of the navigation device. In at least one embodiment, the receiving part is slideable along a trajectory over the outer surface, the trajectory being determined by the shape of both the inner surface of the receiving part of the navigation device and the outer surface of the extending part of the docking system. Particularly, the trajectory is such that the connecting element of the first connection type is guided towards the connecting element of the second connection type for connection.