Chemical-free production of graphene-reinforced polymer matrix composites

    公开(公告)号:US20170166722A1

    公开(公告)日:2017-06-15

    申请号:US14757236

    申请日:2015-12-10

    摘要: Provided is a simple, fast, scalable, and environmentally benign method of producing a graphene-reinforced polymer matrix composite directly from a graphitic material, the method comprising: (a) mixing multiple particles of a graphitic material and multiple particles of a solid polymer carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of solid polymer carrier material particles to produce graphene-coated or graphene-embedded polymer particles inside the impacting chamber; and (c) forming graphene-coated or graphene-embedded polymer particles into the graphene-reinforced polymer matrix composite. Also provided is a mass of the graphene-coated or graphene-embedded polymer particles produced by this method.

    Porous Particles of Interconnected 3D Graphene as a Supercapacitor Electrode Active Material and Production Process
    65.
    发明申请
    Porous Particles of Interconnected 3D Graphene as a Supercapacitor Electrode Active Material and Production Process 有权
    作为超级电容器电极的相互连接的三维石墨烯的多孔颗粒活性材料及其制备方法

    公开(公告)号:US20170062141A1

    公开(公告)日:2017-03-02

    申请号:US14756315

    申请日:2015-08-26

    摘要: A process for producing a supercapacitor electrode, comprising (a) subjecting multiple particles of MCMBs to a chemical activation with an activating agent selected from an acid, a base, or a salt at a temperature from 100° C. to 1,200° C. for a period of 0.5 to 24 hours sufficient to produce multiple porous particles each of a monolithic 3D graphene structure comprising multiple pores and a continuous 3D network of graphene pore walls comprising continuous or naturally interconnected graphene ligaments of 1-20 graphene planes of carbon atoms; (b) producing a suspension containing these multiple porous particles, an optional conductive additive, and an optional resin binder in a liquid medium; and (c) depositing the suspension onto at least a primary surface of a current collector to form a wet layer and removing liquid medium from the wet layer to form the supercapacitor electrode.

    摘要翻译: 一种制造超级电容器电极的方法,包括(a)在100℃至1200℃的温度下,用选自酸,碱或盐的活化剂对MCMB的多个颗粒进行化学活化,以获得 0.5至24小时的时间足以产生多个多孔颗粒,每个多孔颗粒各自包括多孔的单片3D石墨烯结构和石墨烯孔壁的连续3D网络,其包含1-20个碳原子的石墨烯平面的连续或天然互连的石墨烯韧带; (b)在液体介质中制备含有这些多孔颗粒的悬浮液,任选的导电添加剂和任选的树脂粘合剂; 和(c)将悬浮液沉积在集电器的至少一个主表面上以形成湿层并从湿层除去液体介质以形成超级电容器电极。

    Graphene oxide gel bonded graphene composite films and processes for producing same
    66.
    发明授权
    Graphene oxide gel bonded graphene composite films and processes for producing same 有权
    石墨烯氧化物凝胶石墨烯复合膜及其制造方法

    公开(公告)号:US09561955B2

    公开(公告)日:2017-02-07

    申请号:US13385813

    申请日:2012-03-08

    IPC分类号: B82Y30/00 H01B1/04 B82Y40/00

    摘要: Disclosed is a graphene composite thin film composition composed of nano graphene platelets (NGPs) bonded by a graphene oxide binder, wherein the NGPs contain single-layer graphene or multi-layer graphene sheets having a thickness from 0.335 nm to 100 nm. The NGPs occupy a weight fraction of 1% to 99.9% of the total composite weight. The graphene oxide binder, having an oxygen content of 1-40% (preferably

    摘要翻译: 公开了由石墨烯氧化物粘合剂结合的纳米石墨烯片(NGP)组成的石墨烯复合薄膜组合物,其中NGP包含单层石墨烯或厚度为0.335nm至100nm的多层石墨烯片。 NGP占总复合重量的1%至99.9%的重量分数。 基于总氧化石墨烯重量,氧含量为1-40%(优选<10%)的氧化石墨烯氧化物粘合剂由氧化石墨烯氧化物凝胶获得。 复合材料形成厚度不大于1mm,优选不大于100μm且不小于10μm的薄膜。 该组合物具有出色的导热性,导电性和机械强度的组合,这些强度与任何相当厚度范围的薄膜材料都无法比拟。

    Unitary graphene layer or graphene single crystal
    68.
    发明授权
    Unitary graphene layer or graphene single crystal 有权
    单一石墨烯层或石墨烯单晶

    公开(公告)号:US09533889B2

    公开(公告)日:2017-01-03

    申请号:US13694356

    申请日:2012-11-26

    摘要: A unitary graphene layer or graphene single crystal containing closely packed and chemically bonded parallel graphene planes having an inter-graphene plane spacing of 0.335 to 0.40 nm and an oxygen content of 0.01% to 10% by weight, which unitary graphene layer or graphene single crystal is obtained from heat-treating a graphene oxide gel at a temperature higher than 100° C., wherein the average mis-orientation angle between two graphene planes is less than 10 degrees, more typically less than 5 degrees. The molecules in the graphene oxide gel, upon drying and heat-treating, are chemically interconnected and integrated into a unitary graphene entity containing no discrete graphite flake or graphene platelet. This graphene monolith exhibits a combination of exceptional thermal conductivity, electrical conductivity, mechanical strength, surface smoothness, surface hardness, and scratch resistance unmatched by any thin-film material of comparable thickness range.

    摘要翻译: 单层石墨烯层或石墨烯单晶,其含有紧密堆积和化学结合的平行石墨烯平面,其石墨烯平面间距为0.335至0.40nm,氧含量为0.01重量%至10重量%,该单一石墨烯层或石墨烯单晶 通过在高于100℃的温度下热处理石墨烯氧化物凝胶获得,其中两个石墨烯平面之间的平均错位取向角小于10度,更典型地小于5度。 石墨烯氧化物凝胶中的分子在干燥和热处理后被化学相互连接并整合成不含离散石墨薄片或石墨烯薄片的单一石墨烯实体。 该石墨烯整体结构具有卓越的导热性,导电性,机械强度,表面平滑度,表面硬度和耐刮擦性,可与任何相当厚度范围的薄膜材料匹配。

    Partially and fully surface-enable metal ion-exchanging energy storage devices
    69.
    发明申请
    Partially and fully surface-enable metal ion-exchanging energy storage devices 审中-公开
    部分和完全表面使能金属离子交换储能装置

    公开(公告)号:US20160301102A1

    公开(公告)日:2016-10-13

    申请号:US14545239

    申请日:2015-04-13

    CPC分类号: H01M10/05 H01M4/587 H01M4/606

    摘要: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from aluminum (Al), gallium (Ga), indium (In), tin (Sn), lead (P), or bismuth (Bi), and at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with the electrolyte. This energy storage device has a power density significantly higher than that of a lithium-ion battery and an energy density dramatically higher than that of a supercapacitor.

    摘要翻译: 一种表面使能的金属离子交换电池装置,包括阴极,阳极,多孔隔板和含金属离子的电解质,其中金属离子选自铝(Al),镓(Ga),铟(In ),锡(Sn),铅(P)或铋(Bi),并且至少一个电极在器件的第一充电或放电循环之前包含金属离子源,并且至少阴极包括功能性 具有与电解质直接接触的金属离子捕获官能团或金属离子存储表面的材料或纳米结构材料。 该能量存储装置的功率密度显着高于锂离子电池的功率密度,能量密度显着高于超级电容器。

    Alkali metal secondary battery containing a dendrite-intercepting layer
    70.
    发明申请
    Alkali metal secondary battery containing a dendrite-intercepting layer 有权
    含有枝晶截留层的碱金属二次电池

    公开(公告)号:US20160301078A1

    公开(公告)日:2016-10-13

    申请号:US14545204

    申请日:2015-04-08

    摘要: A rechargeable alkali metal battery comprising: (A) an anode comprising an alkali metal layer and a dendrite penetration-resistant layer composed of multiple graphene sheets or platelets or exfoliated graphite flakes that are chemically bonded by a lithium- or sodium-containing species to form an integral layer that prevents dendrite penetration through the integral layer, wherein the lithium-containing species is selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, Na2CO3, Na2O, Na2C2O4, NaOH, NaiX, ROCO2Na, HCONa, RONa, (ROCO2Na)2, (CH2OCO2Na)2, Na2S, Nax SOy, or a combination thereof, wherein X═F, Cl, I, or Br, R=a hydrocarbon group, x=0-1, y=1-4; (B) a cathode comprising a cathode layer; and (C) a separator and electrolyte component in contact with the anode and the cathode; wherein the dendrite penetration-resistant layer is disposed between the alkali metal layer and the separator.

    摘要翻译: 一种可再充电碱金属电池,包括:(A)阳极,其包含碱金属层和由多个石墨烯片或血小板或剥离的石墨片构成的枝晶耐穿透层,所述石墨烯薄片或剥离的石墨薄片通过含锂或钠的物质化学键合形成 其中所述含锂物质选自Li 2 CO 3,Li 2 O,Li 2 C 2 O 4,LiOH,LiX,ROCO2Li,HCOLi,ROLi,(ROCO2Li)2,(CH2OCO2Li)2,Li2S,LixSOy ,Na 2 CO 3,Na 2 O,Na 2 C 2 O 4,NaOH,NaiX,ROCO2Na,HCONa,RONa,(ROCO2Na)2,(CH2OCO2Na)2,Na2S,Nax SOY或其组合,其中X = F,Cl,I或Br,R =烃基,x = 0-1,y = 1-4; (B)阴极,包括阴极层; 和(C)与阳极和阴极接触的分离器和电解质组分; 其中枝晶耐渗层设置在碱金属层和隔板之间。