摘要:
Provided is an integral 3D graphene-carbon hybrid foam composed of multiple pores and pore walls, wherein the pore walls contain single-layer or few-layer graphene sheets chemically bonded by a carbon material having a carbon material-to-graphene weight ratio from 1/100 to 1/2, wherein the few-layer graphene sheets have 2-10 layers of stacked graphene planes having an inter-plane spacing d002 from 0.3354 nm to 0.40 nm and the graphene sheets contain a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.01% to 25% by weight of non-carbon elements wherein said non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. Also provided are a process for producing the hybrid form, products containing the hybrid foam, and its applications.
摘要:
Provided is a simple, fast, scalable, and environmentally benign method of producing a graphene-reinforced polymer matrix composite directly from a graphitic material, the method comprising: (a) mixing multiple particles of a graphitic material and multiple particles of a solid polymer carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of solid polymer carrier material particles to produce graphene-coated or graphene-embedded polymer particles inside the impacting chamber; and (c) forming graphene-coated or graphene-embedded polymer particles into the graphene-reinforced polymer matrix composite. Also provided is a mass of the graphene-coated or graphene-embedded polymer particles produced by this method.
摘要:
A process for producing an electrode for a supercapacitor cell, said process comprising: (A) preparing a plurality of electrically conductive porous layers and a plurality of wet electrode layers composed of an electrode active material and an optional conductive additive mixed with a liquid or gel electrolyte, wherein the conductive porous layers contain interconnected conductive pathways and at least 80% by volume of pores; and (B) stacking and consolidating a desired number of the porous layers and a desired number of the wet electrode layers in an alternating sequence to form an electrode having a thickness no less than 100 μm (preferably greater than 200 μm, more preferably greater than 400 μm, further more preferably greater than 600 μm, and most preferably greater than 1,000 μm).
摘要:
A process for producing an electrode for an alkali metal battery, comprising: (a) Continuously feeding an electrically conductive porous layer to an anode or cathode material impregnation zone, wherein the conductive porous layer has two opposed porous surfaces and contain interconnected conductive pathways and at least 70% by volume of pores; (b) Impregnating a wet anode or cathode active material mixture into the porous layer from at least one of the two porous surfaces to form an anode or cathode electrode, wherein the wet anode or cathode active material mixture contains an anode or cathode active material and an optional conductive additive mixed with a liquid electrolyte; and (c) Supplying at least a protective film to cover the at least one porous surface to form the electrode.
摘要:
A process for producing a supercapacitor electrode, comprising (a) subjecting multiple particles of MCMBs to a chemical activation with an activating agent selected from an acid, a base, or a salt at a temperature from 100° C. to 1,200° C. for a period of 0.5 to 24 hours sufficient to produce multiple porous particles each of a monolithic 3D graphene structure comprising multiple pores and a continuous 3D network of graphene pore walls comprising continuous or naturally interconnected graphene ligaments of 1-20 graphene planes of carbon atoms; (b) producing a suspension containing these multiple porous particles, an optional conductive additive, and an optional resin binder in a liquid medium; and (c) depositing the suspension onto at least a primary surface of a current collector to form a wet layer and removing liquid medium from the wet layer to form the supercapacitor electrode.
摘要:
Disclosed is a graphene composite thin film composition composed of nano graphene platelets (NGPs) bonded by a graphene oxide binder, wherein the NGPs contain single-layer graphene or multi-layer graphene sheets having a thickness from 0.335 nm to 100 nm. The NGPs occupy a weight fraction of 1% to 99.9% of the total composite weight. The graphene oxide binder, having an oxygen content of 1-40% (preferably
摘要:
A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 μm. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.
摘要:
A unitary graphene layer or graphene single crystal containing closely packed and chemically bonded parallel graphene planes having an inter-graphene plane spacing of 0.335 to 0.40 nm and an oxygen content of 0.01% to 10% by weight, which unitary graphene layer or graphene single crystal is obtained from heat-treating a graphene oxide gel at a temperature higher than 100° C., wherein the average mis-orientation angle between two graphene planes is less than 10 degrees, more typically less than 5 degrees. The molecules in the graphene oxide gel, upon drying and heat-treating, are chemically interconnected and integrated into a unitary graphene entity containing no discrete graphite flake or graphene platelet. This graphene monolith exhibits a combination of exceptional thermal conductivity, electrical conductivity, mechanical strength, surface smoothness, surface hardness, and scratch resistance unmatched by any thin-film material of comparable thickness range.
摘要:
A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from aluminum (Al), gallium (Ga), indium (In), tin (Sn), lead (P), or bismuth (Bi), and at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with the electrolyte. This energy storage device has a power density significantly higher than that of a lithium-ion battery and an energy density dramatically higher than that of a supercapacitor.
摘要:
A rechargeable alkali metal battery comprising: (A) an anode comprising an alkali metal layer and a dendrite penetration-resistant layer composed of multiple graphene sheets or platelets or exfoliated graphite flakes that are chemically bonded by a lithium- or sodium-containing species to form an integral layer that prevents dendrite penetration through the integral layer, wherein the lithium-containing species is selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, Na2CO3, Na2O, Na2C2O4, NaOH, NaiX, ROCO2Na, HCONa, RONa, (ROCO2Na)2, (CH2OCO2Na)2, Na2S, Nax SOy, or a combination thereof, wherein X═F, Cl, I, or Br, R=a hydrocarbon group, x=0-1, y=1-4; (B) a cathode comprising a cathode layer; and (C) a separator and electrolyte component in contact with the anode and the cathode; wherein the dendrite penetration-resistant layer is disposed between the alkali metal layer and the separator.
摘要翻译:一种可再充电碱金属电池,包括:(A)阳极,其包含碱金属层和由多个石墨烯片或血小板或剥离的石墨片构成的枝晶耐穿透层,所述石墨烯薄片或剥离的石墨薄片通过含锂或钠的物质化学键合形成 其中所述含锂物质选自Li 2 CO 3,Li 2 O,Li 2 C 2 O 4,LiOH,LiX,ROCO2Li,HCOLi,ROLi,(ROCO2Li)2,(CH2OCO2Li)2,Li2S,LixSOy ,Na 2 CO 3,Na 2 O,Na 2 C 2 O 4,NaOH,NaiX,ROCO2Na,HCONa,RONa,(ROCO2Na)2,(CH2OCO2Na)2,Na2S,Nax SOY或其组合,其中X = F,Cl,I或Br,R =烃基,x = 0-1,y = 1-4; (B)阴极,包括阴极层; 和(C)与阳极和阴极接触的分离器和电解质组分; 其中枝晶耐渗层设置在碱金属层和隔板之间。