Abstract:
In one example, a video coder is configured to code one or more blocks of video data representative of texture information of at least a portion of a frame of video data, process a texture slice for a texture view component of a current view associated, the texture slice comprising the coded one or more blocks and a texture slice header comprising a set of syntax elements representative of characteristics of the texture slice, code depth information representative of depth values for at least the portion of the frame, and process a depth slice for a depth view component corresponding to the texture view component of the view, the depth slice comprising the coded depth information and a depth slice header comprising a set of syntax elements representative of characteristics of the depth slice, wherein process the texture slice or the depth slice comprises predict at least one syntax element.
Abstract:
A method and system for recognizing chemical names in a Chinese document. The method includes: receiving a Chinese document including chemical names; recognizing chemical name segments in the document; recognizing non-chemical name segments in the document; and combining the chemical name segments to get chemical names based on the recognized chemical name segments and non-chemical name segments. Specific embodiments of the present invention can effectively recognize chemical names from a chemical document.
Abstract:
This disclosure describes techniques for coding 3D video block units. In one example, a video encoder is configured to determine a first real-world depth range for a first depth view component comprising a reference view component, determine a second real-world depth range for a second depth view component comprising a current view component, wherein the current view component is predicted relative to the reference view component, determine a predictive block for a portion of the current view component from the reference view component, adjust values of the predictive block based on a difference between the first real-world depth range and the second real-world depth range, and predict the portion of the current view based on the adjusted values of the predictive block.
Abstract:
A method, apparatus, and service station for providing a location-based transportation information service. The method for providing a location-based traffic information service includes receiving a traffic message indicating a traffic condition, determining a traffic information service station matching the traffic message in terms of location, and dispatching the traffic message to the matched traffic information service station such that the traffic message is broadcasted within the service range of the matched traffic information service station. Corresponding apparatus and traffic information service station are also disclosed. According to embodiments of the present invention, a location-specific real-time traffic information service can be provided.
Abstract:
Aspects of this disclosure relate to a method of coding video data. In an example, the method includes identifying a first block of video data in a first temporal location from a first view, wherein the first block of video data is associated with a first temporal motion vector. The method also includes determining, when a second motion vector associated with a second block of video data comprises a temporal motion vector and the second block is from a second view, a motion vector predictor for the second motion vector based on the first temporal motion vector. The method also includes coding prediction data for the second block using the motion vector predictor.
Abstract:
A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.
Abstract:
This disclosure describes techniques for coding 3D video block units. In one example, a video encoder is configured to receive one or more texture components from at least a portion of an image representing a view of three dimensional video data, receive a depth map component for at least the portion of the image, code a block unit indicative of pixels of the one or more texture components for a portion of the image and the depth map component. The coding comprises coding the depth map component relative to at least one of the texture components, and signalling an attribute of the depth map component relative to the one or more texture components.
Abstract:
The example techniques described in this disclosure are generally related to decoded picture buffer management. One or more pictures stored in the decoded picture buffer may be usable for prediction, and others may not. Pictures that are usable for prediction may be referred to as reference pictures. The example techniques described herein may determine whether a reference picture, that is currently indicated to be usable for inter-prediction, should be indicated to be unusable for inter-prediction.
Abstract:
A magnesium halide adduct represented by the formula (I): MgX2.mROH.nE.pH2O, in which X is chlorine, bromine, a C1-C12 alkoxy, a C3-C10 cycloalkoxy or a C6-C10 aryloxy, with the proviso that at least one X is chlorine or bromine; R is a C1-C12 alkyl, a C3-C10 cycloalkyl or a C6-C10 aryl; E is an o-alkoxybenzoate compound represented by the formula (II): in which R1 and R2 groups are independently a C1-C12 linear or branched alkyl, a C3-C10 cycloalkyl, a C6-C10 aryl, a C7-C10 alkaryl or an C7-C10 aralkyl, the R1 and R2 groups are identical to or different from the R group; m is in a range of from 1.0 to 5.0; n is in a range of from 0.001 to 0.5; and p is in a range of from 0 to 0.8, is disclosed. A catalyst component useful in olefin polymerization, which comprises a reaction product of (1) the magnesium halide adduct, (2) a titanium compound, and optionally (3) an electron donor compound, is also disclosed.
Abstract:
A method for improving the performance of the BLSkip mode in SVC includes the steps of upsampling the motion field of the base layer, interpolating the motion vectors for the intra MBs, interpolating the 8×8 block motion field to a 4×4 block motion field, and generating a MV predictor for a 4×4 block in BLSkip mode using neighbor candidates.