摘要:
A high voltage device (10) having MOS input characteristics. A low voltage MOS transistor (12) is provided which has a source (18), a drain (22), and a gate (25). A high voltage transistor (14) is also provided which has a source (20), a drain (24), and gate (16). The source (18) of the low voltage MOS transistor (12) is connected to the gate (16) of the high voltage transistor (14). The drain (22) of the low voltage MOS transistor (12)is connected to the source (20)of the high voltage transistor The low voltage MOS transistor (12) may have a silicon substrate and the substrate of the high voltage transistor (14)may comprise silicon, silicon carbide, or gallium arsenide.
摘要:
A MOSFET (100) device having a silicon carbide substrate (102) of a first conductivity type. A first epitaxial layer (104) of said first conductivity type and a second epitaxial layer (106) of a second conductivity type are located on a top side of the substrate (102). An insulator layer (108) separates gate electrode (112) from second epitaxial layer (106). A drift region (118) of the first conductivity type is located within the second epitaxial layer (106) on the first side of the gate electrode (112). The drift region has an extension which extends through the second epitaxial layer (106) to the first epitaxial layer (104). Source regions (116) and body contact regions (122) are located within the second epitaxial layer (106) on the second side of the gate electrode (112). Source regions (116,) and body contact regions (122) are of opposite conductivity type. Source electrode (126) electrically connects source regions (116) and body contact regions (122 ). A drain electrode (128) is located on a bottom side of the substrate.
摘要:
A transistor has a JFET gate region of a first conductivity type formed at the face of a semiconductor layer to laterally and downwardly surround a drift region of a second conductivity type. A thick insulator region is formed on a portion of the drift region at the face. A IGFET body of the first conductivity type is formed at the face to be adjacent the JFET gate region. This body spaces a source region of the second conductivity type from the drift region. A drain region is formed at the face to be of the second conductivity type and to adjoin the drift region, and to be spaced from the IGFET body. A conductive gate extends over the face between the source region and the thick insulator region, with a thin gate insulator spacing the gate from the IGFET body. The enhanced doping concentration of the JFET gate region with respect to the semiconductor layer allows the dopant concentration of the drift region to likewise be increased, thereby allowing RESURF conditions to be met at the rated voltage and with a lower r.sub.ds (on).
摘要:
A contact pad including a compliant, electrically conductive polymer is provided in a substrate. The contact pad may include a metallic base, and a metallic upper surface wherein said polymer is intermediate said base and upper surfaces. The pad also may have a recessed upper surface, or have a metallic bump thereon depending upon the specific use intended. The contact pad may be incorporated into a substrate including a base substrate material having an upper surface, an interconnecting layer on the upper surface, a dielectric layer on the interconnecting layer, and at least one compliant, electrically conductive polymeric contact pad extending through the dielectric layer and in contact with the interconnecting layer. The substrate so formed may be a temporary substrate used, for example, in testing of integrated circuit chips. The contact pads are manufactured on a substrate by metallizing the surface of a substrate to form an interconnect layer, coating the interconnect layer with a dielectric layer, patterning the sites of the contact pads on the dielectric layer to selectively expose metallic pad portions of the interconnect layer, and coating the exposed portions of the interconnect layer with a compliant, electrically conductive polymer. Alternatively, the manufacturing may include the steps of metallizing the surface of a substrate to form an interconnect layer, coating a polymer layer on the interconnect layer, defining a metal diffusion mask to establish a pattern for the pad, diffusing conductive metal into the layer as defined by the diffusion mask to provide regions of the polymer layer having metal diffused therein, and stripping the diffusion mask. The polymer may be either conductive or non-conductive when the coating step occurs.
摘要:
A high performance test head (18) communicates test signals between integrated circuit test pads and integrated circuit tester. Test head (18) comprises metal bumps (22) that electrically couple with test pads to communicate test signals between test pads and test circuitry. Planar foundation plate (30) provides structural support. Compliant material layer (26) associates with metal bumps (22) and compresses to assure positive contact between metal bumps (22) and test pads. Compliant material layer (26) is positioned between foundation plate (30) and metal bumps (22). Interconnection line (20) adjoins test head (18) to connect metal bumps (22) between test circuitry and integrated circuits. The present invention includes a method for high performance communication of test signals between test pads and test circuitry. The present invention further includes the method of applying semiconductor device fabrication techniques to produce a high performance test head (18).
摘要:
A test set socket adaptor (20) comprises a substrate (28), a plurality of cantilever beams (32) and a package (30). A bare chip (22) may be inserted into and held by the test socket adaptor (20) for insertion into a standard test socket. The cantilevers (32) are designed to deflect and compensate for variations in solder bumps (26) on the bare chip (22). The deflection of the cantilever beams (32) allows a positive contact between the solder bumps (26) and the cantilever beams for an AC and a burn-in test.
摘要:
A test set socket adapter (20) comprises a substrate (28), a plurality of cantilever beams (32) and a package (30). A bare chip (22) may be inserted into and held by the test socket adapter (20) for insertion into a standard test socket. The cantilevers (32) are designed to deflect and compensate for variations in solder bumps (26) on the bare chip (22). The deflection of the cantilever beams (32) allows a positive contact between the solder bumps (26) and the cantilever beams for an AC and a burn-in test.
摘要:
In stacked CMOS, a single gate in first level polysilicon is used to address both an n-channel device in the substrate and an overlaid p-channel device. The p-channel polysilicon device has its channel self-aligned to the gate, by the use of a boron-doped oxide at the sidewalls of the gate. This boron-doped oxide provides a dopant source which dopes the second polysilicon layer to provide heavily doped source/drain extension regions which are self-aligned to the gate in first poly. A mask level is still required to pattern the sources and drains, but the self-aligned source/drain extension regions mean that the source/drain mask level can have a reasonable alignment tolerance.