Abstract:
In at least one embodiment, an electronic system includes a controller, and the controller provides compatibility between an electronic light source and a trailing edge dimmer. In at least one embodiment, the controller is capable of predicting an estimated occurrence of a trailing edge of a phase cut AC voltage and accelerating a transition of the phase cut AC voltage from the trailing edge to a predetermined voltage threshold. In at least one embodiment, the controller predicts an estimated occurrence of the trailing edge of the phase cut AC voltage on the basis of actual observations from one or more previous cycles of the phase cut AC voltage.
Abstract:
In at least one embodiment, a system and method provide current compensation in a lighting system by controlling a lamp current to prevent a current through a triac-based dimmer from undershooting a holding current value. In at least one embodiment, at least one of the lamps includes a controller that controls circuitry in the lamp to draw more lamp current for a period of time than needed to illuminate a brightness of the lamp at a level corresponding to particular phase-cut angle of the supply voltage. By drawing more current than needed, the controller increases the dimmer current during the period of time to prevent the dimmer current from falling below the holding current value. In at least one embodiment, the period of time corresponds to a compensating pulse of the lamp current at a time when the dimmer current would otherwise fall below the holding current value.
Abstract:
In accordance with embodiments of the present disclosure, a digital microphone system may include a microphone transducer and a digital processing system. The microphone transducer may be configured to generate an analog input signal indicative of audio sounds incident upon the microphone transducer. The digital processing system may be configured to convert the analog input signal into a first digital signal having a plurality (e.g., more than 3) of quantization levels, and in the digital domain, process the first digital signal to compress the first digital signal into a second digital signal having fewer quantization levels (e.g., +1, 0, −1) than that of the first digital signal.
Abstract:
Noise introduced in an output signal of a pulse-width modulator (PWM) may be reduced by changing the time duration that a switch is driving the output node. Because the power supplies coupled to the switches are the source of noise in the output signal of the PWM, the time duration that the power supplies are driving the output may be reduced to obtain a subsequent reduction in noise in the output signal. For example, when a small signal is desired to be output by the PWM, the switches may be operated for shorter time durations. Thus, the switches couple the noise sources to ground for a duration of a cycle to reduce contribution of noise to the output. But, when a larger signal is desired to be output by the PWM, the switches may be operated for longer time durations or the conventional time durations described above.
Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
A bipolar junction transistor (BJT) may be used to generate a supply voltage for operating a controller, such as a lighting controller for a LED-based light bulb. A base of the BJT may receive current generated from the supply voltage to control operation of the BJT. Although the base of the BJT would be at a lower voltage than the emitter, a base drive circuit may be coupled between the emitter and the base of the BJT to increase the voltage. As one example, the base drive circuit may be a charge pump. In another example, the BJT may function as its own charge pump. In yet another example, a positive and a negative base current of the BJT may be independently controlled to regulate an output supply voltage VDD from the BJT.
Abstract:
Noise introduced in an output signal of a pulse-width modulator (PWM) may be reduced by changing the time duration that a switch is driving the output node. Because the power supplies coupled to the switches are the source of noise in the output signal of the PWM, the time duration that the power supplies are driving the output may be reduced to obtain a subsequent reduction in noise in the output signal. For example, when a small signal is desired to be output by the PWM, the switches may be operated for shorter time durations. Thus, the switches couple the noise sources to ground for a duration of a cycle to reduce contribution of noise to the output. But, when a larger signal is desired to be output by the PWM, the switches may be operated for longer time durations or the conventional time durations described above.
Abstract:
The overall performance of a dual-path ADC system may be improved by using a VCO-based ADC for small-amplitude signals and employing non-linear cancelation to remove nonlinearities in signals output by the VCO-based ADC. In particular, VCO-based dual-path ADC systems of this disclosure may be configured to receive a first digital signal from a first ADC and a second digital signal from a second ADC, wherein the second digital signal is more non-linear than the first digital signal. The dual-path systems may also be configured to determine one or more non-linear coefficients of the second digital signal based, at least in part, on processing of the first and second digital signals. The dual-path systems may be further configured to modify the second digital signal based, at least in part, on the determined one or more non-linear coefficients to generate a more linear second digital signal.
Abstract:
In accordance with methods and systems of the present disclosure, a mobile device may include an enclosure adapted such that the enclosure is readily transported by a user of the mobile device, a speaker associated with the enclosure for generating sound, and a controller within the enclosure, communicatively coupled to the speaker. The controller may be configured to receive a signal from the speaker, the signal induced at least in part by sound incident on the speaker other than sound generated by the speaker and process the signal.
Abstract:
An audio switching power amplifier having an output with controlled-slope transitions maintains efficiency while avoiding uncontrolled non-overlap intervals during switching transitions. A pair of transistors forming a half-bridge that supplies an output signal at an output terminal of the amplifier are operated so that neither transistor is fully on during an overlap time period. A current source provides an output current to the output terminal during the non-overlap time period to control the output voltage while changing the transistor that conducts the output current from a first one of the pair of transistors to a second one of the pair of transistors. The current source may be provided by operation of one of the transistors in a current source configuration. The voltage of a gate of one of the transistors can be compared with a threshold to provide an indication of the current.