摘要:
An apparatus, system, and method are disclosed for solid-state storage as cache for high-capacity, non-volatile storage. The apparatus, system, and method are provided with a plurality of modules including a cache front-end module and a cache back-end module. The cache front-end module manages data transfers associated with a storage request. The data transfers between a requesting device and solid-state storage function as cache for one or more HCNV storage devices, and the data transfers may include one or more of data, metadata, and metadata indexes. The solid-state storage may include an array of non-volatile, solid-state data storage elements. The cache back-end module manages data transfers between the solid-state storage and the one or more HCNV storage devices.
摘要:
Data is stored on a non-volatile storage media in a sequential, log-based format. The formatted data defines an ordered sequence of storage operations performed on the non-volatile storage media. A virtual storage layer maintains volatile metadata, which may include a forward index associating logical identifiers with respective physical storage units on the non-volatile storage media. The volatile metadata may be reconstructed from the ordered sequence of storage operations. Persistent notes may be used to maintain consistency between the volatile metadata and the contents of the non-volatile storage media. Persistent notes may identify data that does not need to be retained on the non-volatile storage media and/or is no longer valid.
摘要:
An apparatus, system, and method are disclosed for managing physical regions in a solid-state storage device. The definition module defines a physical storage region on solid-state storage media of a solid-state storage device. The physical storage region includes a subset of total physical storage capacity on the solid-state storage media. The storage controller performs memory operations within the physical storage region such that the memory operations are bounded to the physical storage region. The implementation module implements the physical storage region definition with respect to the storage controller for the solid-state storage media.
摘要:
An apparatus, system, and method are disclosed for managing physical regions in a solid-state storage device. The definition module defines a physical storage region on solid-state storage media of a solid-state storage device. The physical storage region includes a subset of total physical storage capacity on the solid-state storage media. The storage controller performs memory operations within the physical storage region such that the memory operations are bounded to the physical storage region. The implementation module implements the physical storage region definition with respect to the storage controller for the solid-state storage media.
摘要:
An apparatus, system, and method are disclosed for a shared, front-end, distributed redundant array of independent drives (“RAID”). A multiple storage request receiver module receives at least two storage requests from at least two clients to store file or object data in one or more storage devices of a storage device set. The storage requests are concurrent and have at least a portion of the data in common. The storage device set includes autonomous storage devices forming a RAID group. Each storage device is capable of independently receiving storage requests from a client over a network. A striping module calculates a stripe pattern and writes N data segments per stripe to N storage devices. A parity-mirror module writes a set of N data segments to parity-mirror storage devices. A sequencer module ensures completion of a first storage request prior to executing a second storage request.
摘要:
An apparatus, system, and method are disclosed for data storage with progressive redundant array of independent drives (“RAID”). A storage request receiver module, a striping module, a parity-mirror module, and a parity progression module are included. The storage request receiver module receives a request to store data of a file or of an object. The striping module calculates a stripe pattern for the data. The stripe pattern includes one or more stripes, and each stripe includes a set of N data segments. The striping module writes the N data segments to N storage devices. Each data segment is written to a separate storage device within a set of storage devices assigned to the stripe. The parity-mirror module writes a set of N data segments to one or more parity-mirror storage devices within the set of storage devices. The parity progression module calculates a parity data segment on each parity-mirror device in response to a storage consolidation operation, and stores the parity data segments. The storage consolidation operation is conducted to recover storage space and/or data on a parity-mirror storage device.
摘要:
An apparatus, system, and method are disclosed for managing data with an empty data segment directive at the storage device. The apparatus, system, and method for managing data include a write request receiver module and a data segment token storage module. The write request receiver module receives a storage request from a requesting device. The storage request includes a request to store a data segment in a storage device. The data segment includes a series of repeated, identical characters or a series of repeated, identical character strings. The data segment token storage module stores a data segment token in the storage device. The data segment token includes at least a data segment identifier and a data segment length. The data segment token is substantially free of data from the data segment.
摘要:
An apparatus, system, and method are disclosed for coordinating storage requests in a multi-processor/multi-thread environment. An append/invalidate module generates a first append data storage command from a first storage request and a second append data storage command from a second storage request. The storage requests overwrite existing data with first and second data including where the first and second data have at least a portion of overlapping data. The second storage request is received after the first storage request. The append/invalidate module updates an index by marking data being overwritten as invalid. A restructure module updates the index based on the first data and updates the index based on the second data. The updated index is organized to indicate that the second data is more current than the first data regardless of processing order. The modules prevent access to the index until the modules have completed updating the index.
摘要:
An apparatus, system, and method are disclosed for managing data with an empty data segment directive at the requesting device. The apparatus, system, and method include a token directive generation module and a token directive transmission module. The token directive generation module generates a storage request with a token directive. The token directive includes a request to store on the storage device a data segment token. The token directive substitutes for a series of repeated, identical characters or a series of repeated, identical character strings to be stored as a data segment. The token directive includes at least a data segment identifier and a data segment length. The data segment token and the token directive are substantially free from data of the data segment. The token directive transmission module transmits the token directive to the storage device.
摘要:
An apparatus, system, and method are disclosed for coordinating storage requests in a multi-processor/multi-thread environment. A append/invalidate module generates a first append data storage command from a first storage request and a second append data storage command from a second storage request. The storage requests overwrite existing data with first and second data including where the first and second data have at least a portion of overlapping data. The second storage request is received after the first storage request. The append/invalidate module updates an index by marking data being overwritten as invalid. A restructure module updates the index based on the first data and updates the index based on the second data. The updated index is organized to indicate that the second data is more current than the first data regardless of processing order. The modules prevent access to the index until the modules have completed updating the index.