摘要:
An apparatus, system, and method are disclosed for managing data in a solid-state storage device. A solid-state storage and solid-state controller are included. The solid-state storage controller includes a write data pipeline and a read data pipeline The write data pipeline includes a packetizer and an ECC generator. The packetizer receives a data segment and creates one or more data packets sized for the solid-state storage. The ECC generator generates one or more error-correcting codes (“ECC”) for the data packets received from the packetizer. The read data pipeline includes an ECC correction module, a depacketizer, and an alignment module. The ECC correction module reads a data packet from solid-state storage, determines if a data error exists using corresponding ECC and corrects errors. The depacketizer checks and removes one or more packet headers. The alignment module removes unwanted data, and re-formats the data as data segments of an object.
摘要:
An apparatus, system, and method are disclosed for a shared, front-end, distributed redundant array of independent drives (“RAID”). A multiple storage request receiver module receives at least two storage requests from at least two clients to store file or object data in one or more storage devices of a storage device set. The storage requests are concurrent and have at least a portion of the data in common. The storage device set includes autonomous storage devices forming a RAID group. Each storage device is capable of independently receiving storage requests from a client over a network. A striping module calculates a stripe pattern and writes N data segments per stripe to N storage devices. A parity-mirror module writes a set of N data segments to parity-mirror storage devices. A sequencer module ensures completion of a first storage request prior to executing a second storage request.
摘要:
An apparatus, system, and method are disclosed for caching data on a solid-state storage device. The solid-state storage device maintains metadata pertaining to cache operations performed on the solid-state storage device, as well as storage operations of the solid-state storage device. The metadata indicates what data in the cache is valid, as well as information about what data in the nonvolatile cache has been stored in a backing store. A backup engine works through units in the nonvolatile cache device and backs up the valid data to the backing store. During grooming operations, the groomer determines whether the data is valid and whether the data is discardable. Data that is both valid and discardable may be removed during the grooming operation. The groomer may also determine whether the data is cold in determining whether to remove the data from the cache device. The cache device may present to clients a logical space that is the same size as the backing store. The cache device may be transparent to the clients.
摘要:
An apparatus, system, and method are disclosed for efficiently mapping virtual and physical addresses. A forward mapping module uses a forward map to identify physical addresses of data of a data segment from a virtual address. The data segment is identified in a storage request. The virtual addresses include discrete addresses within a virtual address space where the virtual addresses sparsely populate the virtual address space. A reverse mapping module uses a reverse map to determine a virtual address of a data segment from a physical address. The reverse map maps the data storage device into erase regions such that a portion of the reverse map spans an erase region of the data storage device erased together during a storage space recovery operation. A storage space recovery module uses the reverse map to identify valid data in an erase region prior to an operation to recover the erase region.
摘要:
An apparatus, system, and method are disclosed for storage space recovery after reaching a read count limit. A read module reads data in a storage division of solid-state storage. A read counter module then increments a read counter corresponding to the storage division. A read counter limit module determines if the read count exceeds a maximum read threshold, and if so, a storage division selection module selects the corresponding storage division for recovery. A data recovery module reads valid data packets from the selected storage division, stores the valid data packets in another storage division of the solid-state storage, and updates a logical index with a new physical address of the valid data.
摘要:
An apparatus, system, and method are disclosed for sharing a device between multiple hosts. The apparatus, system, and method include an RDMA setup module and an RDMA execution module. The RDMA setup module prepares a solid-state storage controller for an RDMA operation to transfer data of a file or of an object between the solid-state storage controller and a requesting device in response to a storage request. The storage request may be substantially free of the data, and the solid-state storage controller may control a solid-state storage via a storage input/output (“I/O”) bus. The solid-state controller controls storage of data in the solid-state storage, and the requesting device is connected to the solid-state controller through a computer network. The RDMA execution module executes the RDMA operation to transfer the data between the requesting device and the solid-state storage controller.
摘要:
An apparatus, system, and method are disclosed for efficiently managing commands in a solid-state storage device that includes a solid-state storage arranged in two or more banks. Each bank is separately accessible and includes two or more solid-state storage elements accessed in parallel by a storage input/output bus. The solid-state storage includes solid-state, non-volatile memory. The solid-state storage device includes a bank interleave that directs one or more commands to two or more queues, where the one or more commands are separated by command type into the queues. Each bank includes a set of queues in the bank interleave controller. Each set of queues includes a queue for each command type. The bank interleave controller coordinates among the banks execution of the commands stored in the queues, where a command of a first type executes on one bank while a command of a second type executes on a second bank.
摘要:
An apparatus, system, and method are disclosed for managing a non-volatile storage medium. A storage controller receives a message that identifies data that no longer needs to be retained on the non-volatile storage medium. The data may be identified using a logical identifier. The message may comprise a hint, directive, or other indication that the data has been erased and/or deleted. In response to the message, the storage controller records an indication that the contents of a physical storage location and/or physical address associated with the logical identifier do not need to be preserved on the non-volatile storage medium.
摘要:
An apparatus, system, and method are disclosed for managing a non-volatile storage medium. A storage controller receives a message that identifies data that no longer needs to be retained on the non-volatile storage medium. The data may be identified using a logical identifier. The message may comprise a hint, directive, or other indication that the data has been erased and/or deleted. In response to the message, the storage controller records an indication that the contents of a physical storage location and/or physical address associated with the logical identifier do not need to be preserved on the non-volatile storage medium.
摘要:
An apparatus, system, and method are disclosed for storage space recovery in solid-state storage. A sequential storage module sequentially writes data packets in a storage division. The storage division includes a portion of a solid-state storage. The data packets are derived from an object. The data packets are sequentially stored by order of processing. A storage division selection module selects a storage division for recovery. A data recovery module reads valid data packets from the storage division selected for recovery, queues the valid data packets with other data packets to be written sequentially, and updates an index with a new physical address of the valid data. The index includes a mapping of physical addresses of data packets to object identifiers. A storage division recovery module marks the storage division selected for recovery as available for sequentially writing data packets in response to completing copying valid data from the storage division.