摘要:
An improved anode, cup and conductor assembly for a reactor vessel includes an anode assembly supported within a cup which holds a supply of process fluid. The cup is supported around its perimeter within the reactor vessel. The anode assembly has an anode shield carrying an anode. The anode shield and the anode are supported from below by a delivery tube which also serves to deliver process fluid to the cup. A bayonet connection is provided between a top portion of the delivery tube and the anode assembly. The fluid delivery tube has a fixed height within the vessel. The anode elevation is adjusted by the interposing of a spacer of desired thickness between the anode and the tube. An electrical conductor is connected to the anode, and passes through the tube to be electrically accessible outside the vessel. The conductor is connected to the anode with a plug-in connection which is completed when the tube is coupled to the anode by the bayonet connection. The spacer is C-shaped to allow changing of the spacer for anode height adjustments without disconnecting the plug-in connection.
摘要:
A reactor for use in electrochemical processing of a microelectronic workpiece is set forth and described herein. The apparatus comprises one or more walls defining a processing space therebetween for containing a processing fluid. The processing space includes at least a first fluid flow region and a second fluid flow region. A first electrode is disposed in the processing fluid of the first fluid flow region while a second electrode, comprising at least a portion of the microelectronic workpiece, is disposed in the processing fluid of the second fluid flow region. Fluid flow within the first fluid flow region is generally directed toward the first electrode and away from the second electrode while fluid flow within the second fluid flow region is generally directed toward the second electrode and away from the first electrode. Depending on the particular electrochemical process that is to be executed, the first electrode may constitute either an anode or a cathode in the electrochemical processing of the microelectronic workpiece.
摘要:
An apparatus for electroplating a workpiece is disclosed in which the apparatus includes a workpiece holding structure. The workpiece holding structure includes a workpiece support having at least one surface that is disposed to engage a front side of the workpiece and at least one electrical contact disposed for contact with at least one corresponding electrical contact on a back-side of the workpiece. The workpiece includes one or more electrically conductive paths between the at least one corresponding electrical contact and a front-side of the workpiece to facilitate electroplating of the front-side surface. An actuator is provided for driving the workpiece support between a first position in which the at least one electrical contact of the workpiece and the at least one contact of the workpiece holding structure are disengaged from one another, and a second position in which the at least one surface clamps the workpiece in a position in which the at least one electrical contact of the workpiece holding structure electrically engages the at least one electrical contact of the workpiece.
摘要:
A reactor for plating a metal onto a surface of a workpiece is set forth. The reactor comprises a reactor bowl including an electroplating solution disposed therein and an anode disposed in the reactor bowl in contact with the electroplating solution. A contact assembly is spaced from the anode within the reactor bowl. The contact assembly includes a plurality of contacts disposed to contact a peripheral edge of the surface of the workpiece to provide electroplating power to the surface of the workpiece. The contacts execute a wiping action against the surface of the workpiece as the workpiece is brought into engagement therewith The contact assembly also including a barrier disposed interior of the plurality of contacts. The barrier includes a member disposed to engage the surface of the workpiece to assist in isolating the plurality of contacts from the electroplating solution. In one embodiment, the plurality of contacts are in the form of discrete flexures while in another embodiment the plurality of contacts are in the form of a Belleville ring contact. A flow path may be provided in the contact assembly for providing a purging gas to the plurality of contacts and the peripheral edge of the workpiece. The purging gas may be used to assist in the formation of the barrier of the contact assembly. A combined electroplating/electroless plating tool and method are also set forth.
摘要:
A reactor for plating a metal onto a surface of a workpiece is set forth. The reactor comprises a reactor bowl including an electroplating solution disposed therein and an anode disposed in the reactor bowl in contact with the electroplating solution. A contact assembly is spaced from the anode within the reactor bowl. The contact assembly includes a plurality of contacts disposed to contact a peripheral edge of the surface of the workpiece to provide electroplating power to the surface of the workpiece. The contacts execute a wiping action against the surface of the workpiece as the workpiece is brought into engagement therewith The contact assembly also including a barrier disposed interior of the plurality of contacts. The barrier includes a member disposed to engage the surface of the workpiece to assist in isolating the plurality of contacts from the electroplating solution. In one embodiment, the plurality of contacts are in the form of discrete flexures while in another embodiment the plurality of contacts are in the form of a Belleville ring contact. A flow path may be provided in the contact assembly for providing a purging gas to the plurality of contacts and the peripheral edge of the workpiece. The purging gas may be used to assist in the formation of the barrier of the contact assembly. A combined electroplating/electroless plating tool and method are also set forth.
摘要:
In an electroplating reactor for plating a spinning wafer, a diffusion plate is supported above an anode located within a cup filled with process fluid within the reactor. The diffusion plate includes a plurality of openings which are arranged in a spiral pattern. The openings allow for an improved plating thickness distribution on the wafer surface. The openings can be elongated slots curved along the direction of the spiral path.
摘要:
A processing assembly for a semiconductor workpiece generally includes a rotor assembly capable of spinning a workpiece, a chemistry delivery assembly for delivering chemistry to the workpiece, and a chemistry collection assembly for collecting spent chemistry from the workpiece. The chemistry collection assembly may include a weir that is configured to spin with the rotor assembly. A method of processing a semiconductor workpiece is also provided.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
摘要:
A processing assembly for a semiconductor workpiece generally includes a rotor assembly capable of spinning a workpiece, a chemistry delivery assembly for delivering chemistry to the workpiece, and a chemistry collection assembly for collecting spent chemistry from the workpiece. The chemistry collection assembly includes a weir assembly surrounding the rotor assembly and having a plurality of weirs. Methods for processing a semiconductor workpiece generally include moving at least one of the rotor assembly and the weir assembly.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.