Abstract:
A variable-length encoder that feeds a Coded Block Pattern (CBP) as an input symbol to variable-length code output part. Coded symbol memory supplies CBPs in neighboring blocks as coding map table reference information to coding map table provider. Coding map table provider determines a coding map table used in coding of the CBP, based on these CBPs in the neighboring blocks, and provides a coding map table H4 to variable-length code output part. Variable-length coding table provider feeds a variable-length coding table to variable-length code output part. Then the coding target CBP is subjected to variable-length coding, and the resultant is outputted as coded data. This allows information source coding of coding symbols to be performed efficiently according to the coding condition and the property of image.
Abstract:
A battery including an electrolytic solution. The electrolytic solution including a compound having a sulfonyl group and at least one peak of ions is selected from the group consisting of Li3SO4+, Li3SO3+, Li2SO3+, and Li2SO2+ as a positive secondary ion and LiSO4−, LiSO3−, SO3−, and SO2− as a negative secondary ion is obtained by surface analysis of the anode using Time of Flight Secondary Ion Mass Spectrometry after charge and discharge.
Abstract translation:一种包括电解液的电池。 包括具有磺酰基和至少一个离子峰的化合物的电解溶液选自Li 3 SO 4 +,Li 3 SO 3 +,Li 2 SO 3 +和Li 2 SO 2 +作为正二级离子,LiSO 3 - ,LiSO 3 - ,SO 3 - 和SO 2 - 通过在充放电后使用飞行时间二次离子质谱法,通过阳极的表面分析获得负二级离子。
Abstract:
An electrode includes: an electrode collector and an electrode active material layer, wherein a film containing a salt represented by the following formula (I) is provided on the electrode active material layer: R1AnMx (I) wherein R1 represents an n-valent organic group containing a sulfur atom; n represents an integer of from 1 to 4; A represents an anion; M represents a metal ion; and x represents an integer of 1 or more.
Abstract:
The present invention has an object to provide a tool replacement system that is capable of preventing the waiting time from occurring as much as possible although an intermediate magazine arranged therefore has a smaller capacity than prior arts. In the tool replacement system, programs pertaining to the sequence of operation and operation time of operating tools 7 are established, wherein, when the operation time of individual tools 7 is shorter than the conveyance time for reciprocation of the tool conveyance apparatus 3 between the tool magazine 1 and the tool replacement arm 4, the object can be solved by realizing transfer of at least a part of the tools planned to be operated in a next process of the corresponding individual tools 7 to the tool replacement arm 4 after the tools are arranged to the intermediate magazine 5.
Abstract:
The invention provides a cathode active material that includes: a particle containing a cathode material capable of absorbing and releasing an electrode reactive material; and a film that is disposed at least partially to the particle and contains a metal salt represented by a formula (1). (R1 represents a (a1+b1+c1) valent group and M1 represents a metallic element. a1, d1, e1 and n each represent an integer of 1 or more and b1 and c1 each represent an integer of 0 or more. However, b1 and c1 satisfy (b1+c1)≧1.), a cathode therewith and a non-aqueous electrolyte secondary battery.
Abstract:
Provided is a system adopting a differential signaling system including a low frequency signaling line arranged to be adjacent to a pair of differential signaling lines in parallel to each other, for transmitting a signal having a frequency which is smaller than a frequency of a signal to be transmitted through the pair of differential signaling lines, in which a transmission end of the low frequency signaling line is connected to a ground pattern through a first capacitive element, and a reception end of the low frequency signaling line is connected to the ground pattern through a second capacitive element. Thus, it is possible to provide, easily and at a low cost, a differential signaling system in which a common mode noise is eliminated without increasing the number of pins.
Abstract:
A secondary battery capable of improving the cycle characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode has an anode current collector, an anode active material layer that is provided on the anode current collector, and contains an anode active material containing at least one of a simple substance of silicon, an alloy of silicon, a compound of silicon, a simple substance of tin, an alloy of tin, and a compound of tin, and a coat that is provided on the anode active material layer, and contains an ionic polymer containing lithium.
Abstract:
An encoder which encodes each of image blocks of a video. The encoder includes a prediction mode selection information generator for generating prediction mode selection information which indicates that a first prediction mode for reducing temporal redundancy is applied to each of second image blocks or that a second prediction mode for reducing spatial redundancy is applied to each of the second image blocks. The second image blocks are obtained by dividing first image blocks. The encoder includes a predictive residual signal generator for generating a predictive residual signal by applying the selected first or second prediction mode to each of the second image blocks. The encoder includes a transmitter for transmitting the prediction mode selection information in association with the predictive residual signal.
Abstract:
A battery capable of improving cycle characteristics is provided. An anode includes: an anode current collector; an anode active material arranged on the anode current collector; and a coating arranged on the anode active material layer, in which the coating includes at least one of a metal salt represented by Chemical Formula 1 and a metal salt of oxocarbonic acid.
Abstract:
A battery capable of improving the cycle characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution is impregnated in a separator provided between the cathode and the anode. The electrolytic solution contains an ionic compound such as (2,2-difluoromalonate oxalate) lithium borate and [bis(3,3,3-trifluoromethyl)glycolate oxalate]lithium borate as an electrolyte salt. In the ionic compound, an anion has an asymmetric structure, and a ligand having an oxygen chelate structure in the anion has a halogen as an element. In the battery, the chemical stability of the electrolytic solution is improved, compared to a battery in which the electrolytic solution contains bis(oxalate) lithium borate or the like as an electrolyte salt.