摘要:
An electrical device that includes a p-type semiconductor device having a p-type work function gate structure including a first high-k gate dielectric, a first metal containing buffer layer, a first titanium nitride layer having a first thickness present on the metal containing buffer layer, and a first gate conductor contact. A mid gap semiconductor device having a mid gap gate structure including a second high-k gate dielectric, a second metal containing buffer layer, a second titanium nitride layer having a second thickness that is less than the first thickness present, and a second gate conductor contact. An n-type semiconductor device having an n-type work function gate structure including a third high-k gate dielectric present on a channel region of the n-type semiconductor device, a third metal containing buffer layer on the third high-k gate dielectric and a third gate conductor fill present atop the third metal containing buffer layer.
摘要:
A stratified gate dielectric stack includes a first high dielectric constant (high-k) gate dielectric comprising a first high-k dielectric material, a band-gap-disrupting dielectric comprising a dielectric material having a different band gap than the first high-k dielectric material, and a second high-k gate dielectric comprising a second high-k dielectric material. The band-gap-disrupting dielectric includes at least one contiguous atomic layer of the dielectric material. Thus, the stratified gate dielectric stack includes a first atomic interface between the first high-k gate dielectric and the band-gap-disrupting dielectric, and a second atomic interface between the second high-k gate dielectric and the band-gap-disrupting dielectric that is spaced from the first atomic interface by at least one continuous atomic layer of the dielectric material of the band-gap-disrupting dielectric. The insertion of the band-gap disrupting dielectric results in lower gate leakage without resulting in any substantial changes in the threshold voltage characteristics and effective oxide thickness.
摘要:
A stratified gate dielectric stack includes a first high dielectric constant (high-k) gate dielectric comprising a first high-k dielectric material, a band-gap-disrupting dielectric comprising a dielectric material having a different band gap than the first high-k dielectric material, and a second high-k gate dielectric comprising a second high-k dielectric material. The band-gap-disrupting dielectric includes at least one contiguous atomic layer of the dielectric material. Thus, the stratified gate dielectric stack includes a first atomic interface between the first high-k gate dielectric and the band-gap-disrupting dielectric, and a second atomic interface between the second high-k gate dielectric and the band-gap-disrupting dielectric that is spaced from the first atomic interface by at least one continuous atomic layer of the dielectric material of the band-gap-disrupting dielectric. The insertion of the band-gap disrupting dielectric results in lower gate leakage without resulting in any substantial changes in the threshold voltage characteristics and effective oxide thickness.
摘要:
A fin field effect transistor including a plurality of fin structures on a substrate, and a shared gate structure on a channel portion of the plurality of fin structures. The fin field effect transistor further includes an epitaxial semiconductor material having a first portion between adjacent fin structures in the plurality of fin structures and a second portion present on outermost sidewalls of end fin structures of the plurality of fin structures. The epitaxial semiconductor material provides a source region and at drain region to each fin structure of the plurality of fin structures. A nitride containing spacer is present on the outermost sidewalls of the second portion of the epitaxial semiconductor material.