Abstract:
Systems and methods for estimating a flow rate through a device are provided. One or more pressure sensors measure a plurality of pressure differentials across a tested device. A temporary flow rate sensor measures a plurality of flow rates through the tested device. Each of the measured flow rates corresponds to one of the measured pressure differentials. A regression model trainer generates regression coefficients for a flow rate model using the measured pressure differentials and corresponding flow rates. A flow rate estimator uses the flow rate model to estimate a flow rate through a tested or untested device as a function of a measured pressure differential across the tested or untested device.
Abstract:
A cascaded control system is configured to control power consumption of a building during a demand limiting period. The cascaded control system includes an energy use setpoint generator and a feedback controller. The energy use setpoint generator is configured to use energy pricing data and measurements of a variable condition within the building to generate an energy use setpoint during the demand limiting period. The feedback controller is configured to use a difference between the energy use setpoint and a measured energy use to generate a control signal for building equipment that operate to affect the variable condition within the building during the demand limiting period.
Abstract:
An operating data aggregator module collects a first set of operating data and a second set of operating data for building equipment. A model generator module generates a first set of model coefficients and a second set of model coefficients for a predictive model for the building equipment using the first set of operating data and the second set of operating data, respectively. A test statistic module generates a test statistic based on a difference between the first set of model coefficients and the second set of model coefficients. A critical value module calculates critical value for the test statistic. A hypothesis testing module compares the test statistic with the critical value using a statistical hypothesis test to determine whether the predictive model has changed. In response to a determination that the predictive model has changed, a fault indication may be generated and/or the predictive model may be adaptively updated.
Abstract:
A method for detecting and cleansing suspect building automation system data is shown and described. The method includes using processing electronics to automatically determine which of a plurality of error detectors and which of a plurality of data cleansers to use with building automation system data. The method further includes using processing electronics to automatically detect errors in the data and cleanse the data using a subset of the error detectors and a subset of the cleansers.
Abstract:
A computer system for use with a building management system in a building includes a processing circuit configured to use historical data received from the building management system to automatically select a set of variables estimated to be significant to energy usage in the building. The processing circuit is further configured to apply a regression analysis to the selected set of variables to generate a baseline model for predicting energy usage in the building.
Abstract:
A system for generating an energy use model of a building includes a processing circuit operable to receive building data indicative of a first type of building variable and to receive additional building data correlated to an energy use of the building. The processing circuit is also operable to determine a portion of the building variable that is uncorrelated with the additional building data. The processing circuit is further operable to use the additional building data and the uncorrelated portion of the building variable to generate the energy use model of the building.
Abstract:
A building management strategy includes using exponentially weighted moving averages with statistical models to detect changes in the behavior of the building management system. Detected changes in the behavior of the system may indicate a detected fault, a change in a predicted behavior, or a need for the statistical models to be updated.
Abstract:
A building management strategy includes using exponentially weighted moving averages with statistical models to detect changes in the behavior of the building management system. Detected changes in the behavior of the system may indicate a detected fault, a change in a predicted behavior, or a need for the statistical models to be updated.
Abstract:
A system that modifies an environmental condition of a building zone is provided. The system includes an airside processing circuit and a waterside processing circuit. The airside processing circuit drives a damper actuator to a first setpoint based on an air flow rate setpoint and a first pressure measurement, receives an air flow error signal based on the air flow rate setpoint and a second pressure measurement, determines a setpoint based on the air flow error signal, and drives the damper actuator to the second setpoint. The waterside processing circuit drives a valve actuator to a first setpoint based on a fluid flow rate setpoint and a first flow rate measurement, receives a fluid flow error signal based on the fluid flow rate setpoint and a second flow rate measurement, determines a second setpoint based on the fluid flow error signal, and drives the valve actuator to the second setpoint.
Abstract:
A controller for equipment that operate to provide heating or cooling to a building or campus includes a processing circuit configured to obtain utility rate data indicating a price of resources consumed by the equipment to serve energy loads of the building or campus, obtain an objective function that expresses a total monetary cost of operating the equipment over an optimization period as a function of the utility rate data and an amount of the resources consumed by the equipment, determine a relationship between resource consumption and load production of the equipment, optimize the objective function over the optimization subject to a constraint based on the relationship between the resource consumption and the load production of the equipment to determine a distribution of the load production across the equipment, and operate the equipment to achieve the distribution.