摘要:
A high-voltage termination structure includes a peripheral voltage-spreading network. One or more trench structures are connected at least partly in series between first and second power supply voltages. The trench structures include first and second current-limiting structures connected in series with a semiconductor material, and also includes permanent charge in a trench-wall dielectric. The current-limiting structures in the trench structures are jointly connected in a series-parallel ladder configuration. The current-limiting structures, in combination with the semiconductor material, provide a voltage distribution between the core portion and the edge portion.
摘要:
In accordance with the invention a vertical power trench MOSFET semiconductor device comprises P+ body and N+ source diffusions shorted together to prevent second breakdown caused by a parasitic bipolar transistor. The device is manufactured in accordance with a process comprising the steps of: providing a heavily doped N+ silicon substrate; utilizing a first, trench, mask to define a plurality of openings comprising a trench gate and a termination; creating P+ body and N+ source area formations by ion implantation without any masks; utilizing a second, contact, mask to define a gate bus area; and utilizing a third metal mask to separate source metal and gate bus metal and remove metal from a portion of the termination, whereby only three masks are utilized to form the semiconductor device.
摘要:
A method for making a power MOSFET includes forming a trench in a semiconductor layer, forming a gate dielectric layer lining the trench, forming a gate conducting layer in a lower portion of the trench, and forming a dielectric layer to fill an upper portion of the trench. Portions of the semiconductor layer laterally adjacent the dielectric layer are removed so that an upper portion thereof extends outwardly from the semiconductor layer. Spacers are formed laterally adjacent the outwardly extending upper portion of the dielectric layer, the spacers are used as a self-aligned mask for defining source/body contact regions.
摘要:
A compound of the general formula (I) or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein A represents a variety of six membered nitrogen containing heterocyclic rings, Q is a bond, halogen, C1-4 alkyl, O, S, SO2, CO or CS and X1, X2, X3 and X4 are optionally substituted by 9 specific substituents or one can be nitrogen. Compositions comprising a carrier and at least one compound of formula (I) are also provided. Further provided are methods of treating tyrosine kinase-associated disease states by administering a compound of formula (I) and methods of suppressing the immune system of a subject by administering a compound of formula (I).
摘要:
The cellular structure of the power device includes a substrate that has a highly doped drain region. Over the substrate there is a more lightly doped epitaxial layer of the same doping. Above the epitaxial layer is a well region formed of an opposite type doping. Covering the wells is an upper source layer of the first conductivity type that is heavily doped. The trench structure includes a sidewall oxide or other suitable insulating material that covers the sidewalls of the trench. The bottom of the trench is filled with a doped polysilicon shield. An interlevel dielectric such as silicon nitride covers the shield. The gate region is formed by another layer of doped polysilicon. A second interlevel dielectric, typically borophosphosilicate glass (BPSG) covers the gate. In operation, current flows vertically between the source and the drain through a channel in the well when a suitable voltage is applied to the gate.
摘要:
The cellular structure of the power device includes a substrate that has a highly doped drain region. Over the substrate there is a more lightly doped epitaxial layer of the same doping. Above the epitaxial layer is a well region formed of an opposite type doping. Covering the wells is an upper source layer of the first conductivity type that is heavily doped. The trench structure includes a sidewall oxide or other suitable insulating material that covers the sidewalls of the trench. The bottom of the trench is filled with a doped polysilicon shield. An interlevel dielectric such as silicon nitride covers the shield. The gate region is formed by another layer of doped polysilicon. A second interlevel dielectric, typically borophosphosilicate glass (BPSG) covers the gate. In operation, current flows vertically between the source and the drain through a channel in the well when a suitable voltage is applied to the gate.
摘要:
A manufacturing process and a power junction field-effect transistor (JFET) are provided. The basic concept of the present invention is to allow the current to flow vertically from the drain region on the bottom side to the source region on the topside of the device. By regulating the voltage applied between the gate regions and the source region, the power junction field-effect transistor (JFET) of the present invention can be built to handle large current and higher voltage for power management purposes, as is similar to the metal oxide semiconductor field effect transistor (MOSFET).
摘要:
A power semiconductor device includes a substrate, a well region, a body region, a trench gate, a gate oxide layer, an L-shaped source region, an inter-layer dielectric layer and a metal layer. The body region is formed on the well region. The trench gate is formed at bilateral sides of the well region. The gate oxide layer is formed on sidewall and bottom of the trench gate. The L-shaped source region has a horizontal portion and a vertical portion formed on a portion of top region and bilateral sides of the body region, respectively. The inter-layer dielectric layer is formed on the trench gate and a portion of the L-shaped source region, thereby defining a contact window therein. The metal layer is formed on the inter-layer dielectric layer, the body region and the L-shaped source region, and connected to the L-shaped source region via the contact window.
摘要:
A semiconductor device includes at least one device active region formed in a first surface of a semiconductor substrate, an electrical contact layer on a second surface of the semiconductor substrate, and at least one resistivity-lowering body positioned in a corresponding recess in the substrate and connected to the electrical contact layer. The body preferably comprises a material having an electrical resistivity lower than an electrical resistivity of the semiconductor substrate to thereby lower an effective electrical resistivity of the substrate. The device active region may be an active region of a power control device, such as a MOSFET or IGBT, for example. The body may preferably comprise an electrical conductor such as copper, aluminum, silver, solder, or doped polysilicon. The at least one recess and associated resistivity-lowering body preferably defines a proportion of the semiconductor substrate area adjacent the device active region greater than about 0.4 percent, and may extend into the semiconductor substrate a distance greater than about 25 percent of a thickness of the substrate.
摘要:
Merging together the drift regions in a low-power trench MOSFET device via a dopant implant through the bottom of the trench permits use of a very small cell pitch, resulting in a very high channel density and a uniformly doped channel and a consequent significant reduction in the channel resistance. By properly choosing the implant dose and the annealing parameters of the drift region, the channel length of the device can be closely controlled, and the channel doping may be made highly uniform. In comparison with a conventional device, the threshold voltage is reduced, the channel resistance is lowered, and the drift region on-resistance is also lowered. Implementing the merged drift regions requires incorporation of a new edge termination design, so that the PN junction formed by the P epi-layer and the N+ substrate can be terminated at the edge of the die.