Abstract:
Provided is a cable-type secondary battery extending longitudinally including a lithium ion supplying core comprising an electrolyte, an inner electrode support of a hollow structure formed to surround an outer surface of the lithium ion supplying core, an inner electrode formed on a surface of the inner electrode support and including an inner current collector and an inner electrode active material, a separation layer formed to surround an outer surface of the inner electrode to prevent a short circuit between electrodes, and an outer electrode formed to surround an outer surface of the separation layer and including an outer electrode active material layer and an outer current collector.
Abstract:
The present invention relates to an anode for a secondary battery, comprising: a wire-type current collector; a metal-based anode active material layer formed on the surface of the wire-type current collector, and comprising a metallic active material; and a graphite-based anode composite layer formed on the surface of the metal-based anode active material layer, and comprising a mixture of a graphite-based active material, a conductive material and a first polymer binder.The anode of the present invention has the metal-based anode active material layer together with the graphite-based anode composite layer acting as a buffer, thereby preventing the metallic active material from being isolated or released even if excessive volume expansion occurs during charging and discharging processes. Also, the graphite-based anode composite layer has good affinity with an organic electrolyte solution to compensate the defect of the metallic active material having low affinity with an organic electrolyte solution.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions, which comprises an electrolyte; an inner electrode, comprising an open-structured inner current collector surrounding the outer surface of the core for supplying lithium ions, an inner electrode active material layer formed on the surface of the inner current collector, and an electrolyte-absorbing layer formed on the outer surface of the inner electrode active material layer; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer and comprising an outer electrode active material layer and an outer current collector.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a porous polymer layer formed on the electrode active material layer; and a first porous supporting layer formed on the porous polymer layer.The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one of surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and a sheet-form outer electrode spirally wound to surround the separation layer or the inner electrode.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and a sheet-form outer electrode spirally wound to surround the separation layer or the inner electrode.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; and a sheet-form laminate of separation layer-outer electrode, spirally wound to surround the outer surface of the inner electrode, the laminate being formed by carrying out compression for the integration of a separation layer for preventing a short circuit, and an outer electrode.According to the present disclosure, the electrodes and the separation layer are compressed and integrated to minimize ununiform spaces between the separation layer and the outer electrode and reduce the thickness of a battery to be prepared, thereby decreasing resistance and improving ionic conductivity within the battery. Also, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions; an inner electrode, comprising a spiral electrode formed by spirally twisting two or more wire-type inner current collectors coated with an inner electrode active material on the surface thereof; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer, and comprising an outer electrode active material layer and an outer current collector.The core for supplying lithium ions is disposed in the inner electrode, from which the electrolyte of the core for supplying lithium ions can be easily penetrated into an electrode active material, thereby facilitating the supply and exchange of lithium ions.